The modifications induced in single-crystal silicon by implanted helium have been investigated by ion beam techniques. The damage has been detected by 2 MeV 4He+ backscattering in channeling conditions and the helium in-depth distribution by 7 and 8 MeV 15N++ elastic recoil scattering. The samples prepared by implanting 2×1016 cm−2 helium ions at 20 keV in silicon wafers held either at 77 K (LNT sample) or at 300 K (RT sample) have been heat treated for 2 h in the 100–800 °C temperature range. In the as-implanted LNT sample the damage maximum is at 130±20 nm and shifts in-depth to 180±10 nm after annealing at 200 °C, in the as-implanted RT sample, the damage maximum is already located at 180±10 nm. In the 250–500 °C temperature range, the LNT and RT samples follow the same annealing path with only slight differences in the temperature values; in both cases, the dechanneling signal increases and reaches a maximum value of nonregistered silicon atoms of 2.2–2.5×1022 at/cm3. In the same temperature range, the helium signal becomes narrower, builds up in a region centered on 220±20 nm and no appreciable loss of helium can be detected. The growth of the damage is consistent with the creation of cracks and a etherogenous distribution of bubbles filled with high pressure helium which stress the lattice; for the channeling Rutherford backscattering technique, their action is similar to silicon interstitials. At temperatures above 500 °C, helium is released from the samples; this process is associated with a decrease of the damage and the formation and increase in size of voids. At 900 °C empty voids with a diameter around 20 nm are found.

High-dose helium-implanted single-crystal silicon: Annealing behavior / Tonini, Rita; Corni, Federico; Frabboni, Stefano; Ottaviani, Giampiero; Cerofolini, G. F.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - STAMPA. - 84:(1998), pp. 4802-4808.

High-dose helium-implanted single-crystal silicon: Annealing behavior

TONINI, Rita;CORNI, Federico;FRABBONI, Stefano;OTTAVIANI, Giampiero;
1998

Abstract

The modifications induced in single-crystal silicon by implanted helium have been investigated by ion beam techniques. The damage has been detected by 2 MeV 4He+ backscattering in channeling conditions and the helium in-depth distribution by 7 and 8 MeV 15N++ elastic recoil scattering. The samples prepared by implanting 2×1016 cm−2 helium ions at 20 keV in silicon wafers held either at 77 K (LNT sample) or at 300 K (RT sample) have been heat treated for 2 h in the 100–800 °C temperature range. In the as-implanted LNT sample the damage maximum is at 130±20 nm and shifts in-depth to 180±10 nm after annealing at 200 °C, in the as-implanted RT sample, the damage maximum is already located at 180±10 nm. In the 250–500 °C temperature range, the LNT and RT samples follow the same annealing path with only slight differences in the temperature values; in both cases, the dechanneling signal increases and reaches a maximum value of nonregistered silicon atoms of 2.2–2.5×1022 at/cm3. In the same temperature range, the helium signal becomes narrower, builds up in a region centered on 220±20 nm and no appreciable loss of helium can be detected. The growth of the damage is consistent with the creation of cracks and a etherogenous distribution of bubbles filled with high pressure helium which stress the lattice; for the channeling Rutherford backscattering technique, their action is similar to silicon interstitials. At temperatures above 500 °C, helium is released from the samples; this process is associated with a decrease of the damage and the formation and increase in size of voids. At 900 °C empty voids with a diameter around 20 nm are found.
1998
84
4802
4808
High-dose helium-implanted single-crystal silicon: Annealing behavior / Tonini, Rita; Corni, Federico; Frabboni, Stefano; Ottaviani, Giampiero; Cerofolini, G. F.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - STAMPA. - 84:(1998), pp. 4802-4808.
Tonini, Rita; Corni, Federico; Frabboni, Stefano; Ottaviani, Giampiero; Cerofolini, G. F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/451859
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 36
social impact