We report on a methodology to assist fabrication process development using a case study of high thermal budget (HTB) and low thermal budget (LTB) fabrication flows for high- k/metal gate stacks in n-MOSFETs. This methodology is supported by simulations that self-consistently extract defect characteristics by simultaneously considering a set of electrical measurement data, specifically stress-induced leakage current (SILC), threshold voltage shift (PBTI), and multi-frequency charge-pumping (MFCP). The contributions of pre-existing and stress-induced defects in SiO2/HfO2 gate stacks on device performance are examined. Information on defect distributions, extracted in the as-fabricated and post-stress HTB and LTB devices, allow understanding their dependence on the fabrication process, which can provide guidelines for the process optimization.

Defect density evaluation in a high-k MOSFET gate stack combining experimental and modeling methods / Puglisi, Francesco Maria; Veksler, D.; Matthews, K.; Bersuker, G.; Larcher, Luca; Padovani, Andrea; Vandelli, Luca; Pavan, Paolo. - ELETTRONICO. - (2014), pp. GD.4.1-GD.4.4. (Intervento presentato al convegno 52nd IEEE International Reliability Physics Symposium, IRPS 2014 tenutosi a Waikoloa, HI, usa nel June 1-5, 2014) [10.1109/IRPS.2014.6861147].

Defect density evaluation in a high-k MOSFET gate stack combining experimental and modeling methods

PUGLISI, Francesco Maria;LARCHER, Luca;PADOVANI, ANDREA;VANDELLI, LUCA;PAVAN, Paolo
2014

Abstract

We report on a methodology to assist fabrication process development using a case study of high thermal budget (HTB) and low thermal budget (LTB) fabrication flows for high- k/metal gate stacks in n-MOSFETs. This methodology is supported by simulations that self-consistently extract defect characteristics by simultaneously considering a set of electrical measurement data, specifically stress-induced leakage current (SILC), threshold voltage shift (PBTI), and multi-frequency charge-pumping (MFCP). The contributions of pre-existing and stress-induced defects in SiO2/HfO2 gate stacks on device performance are examined. Information on defect distributions, extracted in the as-fabricated and post-stress HTB and LTB devices, allow understanding their dependence on the fabrication process, which can provide guidelines for the process optimization.
2014
52nd IEEE International Reliability Physics Symposium, IRPS 2014
Waikoloa, HI, usa
June 1-5, 2014
GD.4.1
GD.4.4
Puglisi, Francesco Maria; Veksler, D.; Matthews, K.; Bersuker, G.; Larcher, Luca; Padovani, Andrea; Vandelli, Luca; Pavan, Paolo
Defect density evaluation in a high-k MOSFET gate stack combining experimental and modeling methods / Puglisi, Francesco Maria; Veksler, D.; Matthews, K.; Bersuker, G.; Larcher, Luca; Padovani, Andrea; Vandelli, Luca; Pavan, Paolo. - ELETTRONICO. - (2014), pp. GD.4.1-GD.4.4. (Intervento presentato al convegno 52nd IEEE International Reliability Physics Symposium, IRPS 2014 tenutosi a Waikoloa, HI, usa nel June 1-5, 2014) [10.1109/IRPS.2014.6861147].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1073049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact