This paper introduces a novel upper limb robotic exoskeleton designed to assist industrial operators in a wide range of manual repetitive tasks, such as tool handling and lifting/moving of heavy items. Due to its reduced size and high maneuverability, the proposed portable device may also be employed for rehabilitation purposes (e.g. as an aid for people with permanent neuromuscular diseases or post-stroke patients). Its primary function is to compensate the gravity loads acting on the human shoulder by means of a hybrid system consisting of four electric motors and three passive springs. The paper focuses on the exoskeleton mechanical design and virtual prototyping. After a preliminary review of the existent architectures and procedures aimed at defining the exoskeleton functional requirements, a detailed behavioral analysis is conducted using analytical and numerical approaches. The developed interactive model allows to simulate both kinematics and statics of the exoskeleton for every possible movement within the design workspace. To validate the model, the results have been compared with the ones achieved with a commercial multibody software for three different operator’s movements.

Conceptual design and virtual prototyping of a wearable upper limb exoskeleton for assisted operations / Bilancia, P.; Berselli, G.. - In: INTERNATIONAL JOURNAL ON INTERACTIVE DESIGN AND MANUFACTURING. - ISSN 1955-2513. - (2021), pp. 1-15. [10.1007/s12008-021-00779-9]

Conceptual design and virtual prototyping of a wearable upper limb exoskeleton for assisted operations

Bilancia P.;Berselli G.
2021

Abstract

This paper introduces a novel upper limb robotic exoskeleton designed to assist industrial operators in a wide range of manual repetitive tasks, such as tool handling and lifting/moving of heavy items. Due to its reduced size and high maneuverability, the proposed portable device may also be employed for rehabilitation purposes (e.g. as an aid for people with permanent neuromuscular diseases or post-stroke patients). Its primary function is to compensate the gravity loads acting on the human shoulder by means of a hybrid system consisting of four electric motors and three passive springs. The paper focuses on the exoskeleton mechanical design and virtual prototyping. After a preliminary review of the existent architectures and procedures aimed at defining the exoskeleton functional requirements, a detailed behavioral analysis is conducted using analytical and numerical approaches. The developed interactive model allows to simulate both kinematics and statics of the exoskeleton for every possible movement within the design workspace. To validate the model, the results have been compared with the ones achieved with a commercial multibody software for three different operator’s movements.
1
15
Conceptual design and virtual prototyping of a wearable upper limb exoskeleton for assisted operations / Bilancia, P.; Berselli, G.. - In: INTERNATIONAL JOURNAL ON INTERACTIVE DESIGN AND MANUFACTURING. - ISSN 1955-2513. - (2021), pp. 1-15. [10.1007/s12008-021-00779-9]
Bilancia, P.; Berselli, G.
File in questo prodotto:
File Dimensione Formato  
IJIDEM_Exoskeleton.pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1255288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact