Industrial robots are commonly designed to be very fast and stiff in order to achieve extremely precise position control capabilities. Nonetheless, high speeds and power do not allow for a safe physical interaction between robots and humans. With the exception of the latest generation lightweight arms, purposely design for human-robot collaborative tasks, safety devices shall be employed when workers enter the robots workspace, in order to reduce the chances of injuries. In this context, Variable Stiffness Actuators (VSA) potentially represent an effective solution for increasing robot safety. In light of this consideration, the present paper describes the design optimization of a VSA architecture previously proposed by the authors. In this novel embodiment, the VSA can achieve stiffness modulation via the use of a pair of compliant mechanisms with distributed compliance, which act as nonlinear springs with proper torque-deflection characteristic. Such elastic elements are composed of slender beams whose neutral axis is described by a spline curve with non-trivial shape. The beam geometry is determined by leveraging on a CAD/CAE framework allowing for the shape optimization of complex flexures. The design method makes use of the modeling and simulation capabilities of a parametric CAD software seamlessly connected to a FEM tool (i.e. Ansys Workbench). For validation purposes, proof-concept 3D printed prototypes of both non-linear elastic element and overall VSA are finally produced and tested. Experimental results fully confirm that the compliant mechanism behaves as expected.

DESIGN OF A BEAM-BASED VARIABLE STIFFNESS ACTUATOR VIA SHAPE OPTIMIZATION IN A CAD/CAE ENVIRONMENT / Bilancia, P; Berselli, G; Scarcia, U; Palli, G. - (2018). (Intervento presentato al convegno ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES, AND INTELLIGENT SYSTEMS tenutosi a San Antonio nel September 10-12, 2018) [10.1115/SMASIS2018-8053].

DESIGN OF A BEAM-BASED VARIABLE STIFFNESS ACTUATOR VIA SHAPE OPTIMIZATION IN A CAD/CAE ENVIRONMENT

Bilancia, P
;
Berselli, G;Palli, G
2018

Abstract

Industrial robots are commonly designed to be very fast and stiff in order to achieve extremely precise position control capabilities. Nonetheless, high speeds and power do not allow for a safe physical interaction between robots and humans. With the exception of the latest generation lightweight arms, purposely design for human-robot collaborative tasks, safety devices shall be employed when workers enter the robots workspace, in order to reduce the chances of injuries. In this context, Variable Stiffness Actuators (VSA) potentially represent an effective solution for increasing robot safety. In light of this consideration, the present paper describes the design optimization of a VSA architecture previously proposed by the authors. In this novel embodiment, the VSA can achieve stiffness modulation via the use of a pair of compliant mechanisms with distributed compliance, which act as nonlinear springs with proper torque-deflection characteristic. Such elastic elements are composed of slender beams whose neutral axis is described by a spline curve with non-trivial shape. The beam geometry is determined by leveraging on a CAD/CAE framework allowing for the shape optimization of complex flexures. The design method makes use of the modeling and simulation capabilities of a parametric CAD software seamlessly connected to a FEM tool (i.e. Ansys Workbench). For validation purposes, proof-concept 3D printed prototypes of both non-linear elastic element and overall VSA are finally produced and tested. Experimental results fully confirm that the compliant mechanism behaves as expected.
2018
ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES, AND INTELLIGENT SYSTEMS
San Antonio
September 10-12, 2018
Bilancia, P; Berselli, G; Scarcia, U; Palli, G
DESIGN OF A BEAM-BASED VARIABLE STIFFNESS ACTUATOR VIA SHAPE OPTIMIZATION IN A CAD/CAE ENVIRONMENT / Bilancia, P; Berselli, G; Scarcia, U; Palli, G. - (2018). (Intervento presentato al convegno ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES, AND INTELLIGENT SYSTEMS tenutosi a San Antonio nel September 10-12, 2018) [10.1115/SMASIS2018-8053].
File in questo prodotto:
File Dimensione Formato  
SMASIS18_VSA.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 3.83 MB
Formato Adobe PDF
3.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1252149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact