Basil is a plant known worldwide for its culinary and health attributes. It counts more than a hundred and fifty species and many more chemo-types due to its easy cross-breeds. Each species and each chemo-type have a typical aroma pattern and selecting the proper one is crucial for the food industry. Twelve basil varieties have been studied over three years (2018–2020), as have four different cuts. To characterize the aroma profile, nine typical basil flavour molecules have been selected using a gas chromatography–mass spectrometry coupled with an olfactometer (GC–MS/O). The concentrations of the nine selected molecules were measured by an ultra-fast CG e-nose and Principal Component Analysis (PCA) was applied to detect possible differences among the samples. The PCA results highlighted differences between harvesting years, mainly for 2018, whereas no observable clusters were found concerning varieties and cuts, probably due to the combined effects of the investigated factors. For this reason, the ANOVA Simultaneous Component Analysis (ASCA) methodology was applied on a balanced a posteriori designed dataset. All the considered factors and interactions were statistically significant (p < 0.05) in explaining differences between the basil aroma profiles, with more relevant effects of variety and year.
Characterization of Basil Volatile Fraction and Study of its Agronomic Variation by ASCA / D'Alessandro, Alessandro; Ballestrieri, Daniele; Strani, Lorenzo; Cocchi, Marina; Durante, Caterina. - In: MOLECULES. - ISSN 1420-3049. - 26:13(2021), pp. 3842-3856. [10.3390/molecules26133842]
Characterization of Basil Volatile Fraction and Study of its Agronomic Variation by ASCA
D'ALESSANDRO, ALESSANDRO;Strani, Lorenzo;Cocchi, Marina
;Durante, Caterina
2021
Abstract
Basil is a plant known worldwide for its culinary and health attributes. It counts more than a hundred and fifty species and many more chemo-types due to its easy cross-breeds. Each species and each chemo-type have a typical aroma pattern and selecting the proper one is crucial for the food industry. Twelve basil varieties have been studied over three years (2018–2020), as have four different cuts. To characterize the aroma profile, nine typical basil flavour molecules have been selected using a gas chromatography–mass spectrometry coupled with an olfactometer (GC–MS/O). The concentrations of the nine selected molecules were measured by an ultra-fast CG e-nose and Principal Component Analysis (PCA) was applied to detect possible differences among the samples. The PCA results highlighted differences between harvesting years, mainly for 2018, whereas no observable clusters were found concerning varieties and cuts, probably due to the combined effects of the investigated factors. For this reason, the ANOVA Simultaneous Component Analysis (ASCA) methodology was applied on a balanced a posteriori designed dataset. All the considered factors and interactions were statistically significant (p < 0.05) in explaining differences between the basil aroma profiles, with more relevant effects of variety and year.File | Dimensione | Formato | |
---|---|---|---|
molecules-1221207 v3.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris