Logic-in-memory (LiM) circuits based on resistive random access memory (RRAM) devices and the material implication logic are promising candidates for the development of low-power computing devices that could fulfill the growing demand of distributed computing systems. However, these circuits are affected by many reliability challenges that arise from device nonidealities (e.g., variability) and the characteristics of the employed circuit architecture. Thus, an accurate investigation of the variability at the array level is needed to evaluate the reliability and performance of such circuit architectures. In this work, we explore the reliability and performance of smart IMPLY (SIMPLY) (i.e., a recently proposed LiM architecture with improved reliability and performance) on two 4-kb RRAM arrays based on different resistive switching oxides integrated in the back end of line (BEOL) of the 0.25-μm BiCMOS process. We analyze the tradeoff between reliability and energy consumption of SIMPLY architecture by exploiting the results of an extensive array-level variability characterization of the two technologies. Finally, we study the worst case performance of a full adder implemented with the SIMPLY architecture and benchmark it on the analogous CMOS implementation.

Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays / Zanotti, T.; Zambelli, C.; Puglisi, F. M.; Milo, V.; Perez, E.; Mahadevaiah, M. K.; Ossorio, O. G.; Wenger, C.; Pavan, P.; Olivo, P.; Ielmini, D.. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - 67:11(2020), pp. 4611-4615. [10.1109/TED.2020.3025271]

Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays

Zanotti T.;Puglisi F. M.;Pavan P.;
2020

Abstract

Logic-in-memory (LiM) circuits based on resistive random access memory (RRAM) devices and the material implication logic are promising candidates for the development of low-power computing devices that could fulfill the growing demand of distributed computing systems. However, these circuits are affected by many reliability challenges that arise from device nonidealities (e.g., variability) and the characteristics of the employed circuit architecture. Thus, an accurate investigation of the variability at the array level is needed to evaluate the reliability and performance of such circuit architectures. In this work, we explore the reliability and performance of smart IMPLY (SIMPLY) (i.e., a recently proposed LiM architecture with improved reliability and performance) on two 4-kb RRAM arrays based on different resistive switching oxides integrated in the back end of line (BEOL) of the 0.25-μm BiCMOS process. We analyze the tradeoff between reliability and energy consumption of SIMPLY architecture by exploiting the results of an extensive array-level variability characterization of the two technologies. Finally, we study the worst case performance of a full adder implemented with the SIMPLY architecture and benchmark it on the analogous CMOS implementation.
67
11
4611
4615
Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays / Zanotti, T.; Zambelli, C.; Puglisi, F. M.; Milo, V.; Perez, E.; Mahadevaiah, M. K.; Ossorio, O. G.; Wenger, C.; Pavan, P.; Olivo, P.; Ielmini, D.. - In: IEEE TRANSACTIONS ON ELECTRON DEVICES. - ISSN 0018-9383. - 67:11(2020), pp. 4611-4615. [10.1109/TED.2020.3025271]
Zanotti, T.; Zambelli, C.; Puglisi, F. M.; Milo, V.; Perez, E.; Mahadevaiah, M. K.; Ossorio, O. G.; Wenger, C.; Pavan, P.; Olivo, P.; Ielmini, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1227673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact