A new vision in human–robot collaboration has allowed to place robots nearby human operators, working close to each other in industrial environments. As a consequence, human safety has become a dominant issue, together with production efficiency. In this paper we propose an optimization-based control algorithm that allows robots to avoid obstacles (like human operators) while minimizing the difference between the nominal acceleration input and the commanded one. Control Barrier Functions are exploited to build safety barriers around each robot link, to guarantee collision-free trajectories along the whole robot body. Human accelerations and velocities are computed by means of a bank of Kalman filters. To solve obstruction problems, two RGB-D cameras are used and the measured skeleton data are processed and merged using the mentioned bank of Kalman filters. The algorithm is implemented on an Universal Robots UR5 in order to validate the proposed approach.

Safety barrier functions and multi-camera tracking for human–robot shared environment / Ferraguti, Federica; Talignani Landi, Chiara; Costi, Silvia; Bonfè, Marcello; Farsoni, Saverio; Secchi, Cristian; Fantuzzi, Cesare. - In: ROBOTICS AND AUTONOMOUS SYSTEMS. - ISSN 0921-8890. - 124:(2020), pp. 103388-103407. [10.1016/j.robot.2019.103388]

Safety barrier functions and multi-camera tracking for human–robot shared environment

Ferraguti, Federica;Talignani Landi, Chiara;Costi, Silvia;Secchi, Cristian;Fantuzzi, Cesare
2020

Abstract

A new vision in human–robot collaboration has allowed to place robots nearby human operators, working close to each other in industrial environments. As a consequence, human safety has become a dominant issue, together with production efficiency. In this paper we propose an optimization-based control algorithm that allows robots to avoid obstacles (like human operators) while minimizing the difference between the nominal acceleration input and the commanded one. Control Barrier Functions are exploited to build safety barriers around each robot link, to guarantee collision-free trajectories along the whole robot body. Human accelerations and velocities are computed by means of a bank of Kalman filters. To solve obstruction problems, two RGB-D cameras are used and the measured skeleton data are processed and merged using the mentioned bank of Kalman filters. The algorithm is implemented on an Universal Robots UR5 in order to validate the proposed approach.
2020
124
103388
103407
Safety barrier functions and multi-camera tracking for human–robot shared environment / Ferraguti, Federica; Talignani Landi, Chiara; Costi, Silvia; Bonfè, Marcello; Farsoni, Saverio; Secchi, Cristian; Fantuzzi, Cesare. - In: ROBOTICS AND AUTONOMOUS SYSTEMS. - ISSN 0921-8890. - 124:(2020), pp. 103388-103407. [10.1016/j.robot.2019.103388]
Ferraguti, Federica; Talignani Landi, Chiara; Costi, Silvia; Bonfè, Marcello; Farsoni, Saverio; Secchi, Cristian; Fantuzzi, Cesare
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1196763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 40
social impact