Thymidylate synthase (TS) is a prominent drug target for different cancer types. However, the prolonged use of its classical inhibitors, substrate analogs that bind at the active site, leads to TS overexpression and drug resistance in the clinic. In the effort to identify anti-TS drugs with new modes of action and able to overcome platinum drug resistance in ovarian cancer, octapeptides with a new allosteric inhibition mechanism were identified as cancer cell growth inhibitors that do not cause TS overexpression. To improve the biological properties, 10 cyclic peptides (cPs) were designed from the lead peptides and synthesized. The cPs were screened for the ability to inhibit recombinant human thymidylate synthase (hTS), and peptide 7 was found to act as an allosteric inhibitor more potent than its parent open-chain peptide [Pro3]LR. In cytotoxicity studies on three human ovarian cancer cell lines, IGROV-1, A2780, and A2780/CP, peptide 5 and two other cPs, including 7, showed IC50 values comparable with those of the reference drug 5-fluorouracil, of the open-chain peptide [d-Gln4]LR, and of another seven prolyl derivatives of the lead peptide LR. These promising results indicate cP 7 as a possible lead compound to be chemically modified with the aim of improving both allosteric TS inhibitory activity and anticancer effectiveness.

Cyclic Peptides Acting as Allosteric Inhibitors of Human Thymidylate Synthase and Cancer Cell Growth / Pacifico, Salvatore; Santucci, Matteo; Luciani, Rosaria; Saxena, Puneet; Linciano, Pasquale; Ponterini, Glauco; Lauriola, Angela; D'Arca, Domenico; Marverti, Gaetano; Guerrini, Remo; Costi, Maria Paola. - In: MOLECULES. - ISSN 1420-3049. - 24:19(2019), pp. 1-16. [10.3390/molecules24193493]

Cyclic Peptides Acting as Allosteric Inhibitors of Human Thymidylate Synthase and Cancer Cell Growth

Salvatore Pacifico;Matteo Santucci;Rosaria Luciani;Puneet Saxena;Pasquale Linciano;Glauco Ponterini;Angela Lauriola;Domenico D’Arca;Gaetano Marverti;Remo Guerrini
;
Maria Paola Costi
2019

Abstract

Thymidylate synthase (TS) is a prominent drug target for different cancer types. However, the prolonged use of its classical inhibitors, substrate analogs that bind at the active site, leads to TS overexpression and drug resistance in the clinic. In the effort to identify anti-TS drugs with new modes of action and able to overcome platinum drug resistance in ovarian cancer, octapeptides with a new allosteric inhibition mechanism were identified as cancer cell growth inhibitors that do not cause TS overexpression. To improve the biological properties, 10 cyclic peptides (cPs) were designed from the lead peptides and synthesized. The cPs were screened for the ability to inhibit recombinant human thymidylate synthase (hTS), and peptide 7 was found to act as an allosteric inhibitor more potent than its parent open-chain peptide [Pro3]LR. In cytotoxicity studies on three human ovarian cancer cell lines, IGROV-1, A2780, and A2780/CP, peptide 5 and two other cPs, including 7, showed IC50 values comparable with those of the reference drug 5-fluorouracil, of the open-chain peptide [d-Gln4]LR, and of another seven prolyl derivatives of the lead peptide LR. These promising results indicate cP 7 as a possible lead compound to be chemically modified with the aim of improving both allosteric TS inhibitory activity and anticancer effectiveness.
2019
set-2019
24
19
1
16
Cyclic Peptides Acting as Allosteric Inhibitors of Human Thymidylate Synthase and Cancer Cell Growth / Pacifico, Salvatore; Santucci, Matteo; Luciani, Rosaria; Saxena, Puneet; Linciano, Pasquale; Ponterini, Glauco; Lauriola, Angela; D'Arca, Domenico; Marverti, Gaetano; Guerrini, Remo; Costi, Maria Paola. - In: MOLECULES. - ISSN 1420-3049. - 24:19(2019), pp. 1-16. [10.3390/molecules24193493]
Pacifico, Salvatore; Santucci, Matteo; Luciani, Rosaria; Saxena, Puneet; Linciano, Pasquale; Ponterini, Glauco; Lauriola, Angela; D'Arca, Domenico; Ma...espandi
File in questo prodotto:
File Dimensione Formato  
molecules-24-03493.pdf

Open access

Descrizione: articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1182367
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact