The paper describes an estimation and identification procedure that allows to reconstruct the inertial parameters of a rigid load attached to the end-effector of an industrial manipulator. In particular, the proposed method adopts a multirate quaternion-based Kalman filter, fusing measurements obtained from robot kinematics and inertial sensors at possibly different sampling frequencies, to estimate linear accelerations and angular velocities/accelerations of the load. Then, a recursive total least-squares (RTLS) process is executed to identify the load parameters. Both steps of the estimation and identification procedure are performed in real-time, without the need for offline post-processing of measured data.
Real-time identification of robot payload using a multirate quaternion-based kalman filter and recursive total least-squares / Farsoni, Saverio; Landi, Chiara Talignani; Ferraguti, Federica; Secchi, Cristian; Bonfe, Marcello. - (2018), pp. 2103-2109. (Intervento presentato al convegno 2018 IEEE International Conference on Robotics and Automation, ICRA 2018 tenutosi a aus nel 2018) [10.1109/ICRA.2018.8461167].
Real-time identification of robot payload using a multirate quaternion-based kalman filter and recursive total least-squares
Landi, Chiara Talignani;Ferraguti, Federica;Secchi, Cristian;Bonfe, Marcello
2018
Abstract
The paper describes an estimation and identification procedure that allows to reconstruct the inertial parameters of a rigid load attached to the end-effector of an industrial manipulator. In particular, the proposed method adopts a multirate quaternion-based Kalman filter, fusing measurements obtained from robot kinematics and inertial sensors at possibly different sampling frequencies, to estimate linear accelerations and angular velocities/accelerations of the load. Then, a recursive total least-squares (RTLS) process is executed to identify the load parameters. Both steps of the estimation and identification procedure are performed in real-time, without the need for offline post-processing of measured data.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris