In this paper we discuss the physical mechanisms governing the charge transport inside hafnium based dielectric stack from a modeling perspective. We propose a detailed Monte-Carlo physical model, which describes the charge transport across high-k stacks through the multiphonon trap-assisted-tunneling theory. This model reproduces accurately the voltage and temperature dependencies of the leakage current across HfO2-based stacks. Starting from this physical description, we develop an analytical model for the TAT current across high-k stacks, which can be implemented into SPICE-like circuit simulators. Despite the simplifying approximations, this compact model reproduces accurately the measurements, thus representing an effective tool for the investigation of the TAT currents.
Leakage current in HfO2 stacks: from physical to compact modeling / Larcher, Luca; Padovani, Andrea; Pavan, Paolo. - STAMPA. - (2012), pp. 809-814. (Intervento presentato al convegno Workshop on Compact Modeling tenutosi a Santa Clara (CA, USA) nel 10-21 June 2012).
Leakage current in HfO2 stacks: from physical to compact modeling
LARCHER, Luca;PADOVANI, ANDREA;PAVAN, Paolo
2012
Abstract
In this paper we discuss the physical mechanisms governing the charge transport inside hafnium based dielectric stack from a modeling perspective. We propose a detailed Monte-Carlo physical model, which describes the charge transport across high-k stacks through the multiphonon trap-assisted-tunneling theory. This model reproduces accurately the voltage and temperature dependencies of the leakage current across HfO2-based stacks. Starting from this physical description, we develop an analytical model for the TAT current across high-k stacks, which can be implemented into SPICE-like circuit simulators. Despite the simplifying approximations, this compact model reproduces accurately the measurements, thus representing an effective tool for the investigation of the TAT currents.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris