Recent efforts of researchers to elucidate the molecular mechanisms of biological systems have been revolutionized greatly with the use of high throughput and cost-effective techniques such as next generation sequencing (NGS). Application of NGS to microbial genomics is not just limited to predict the prevalence of microorganisms in food samples but also to elucidate the molecular basis of how microorganisms respond to different food-associated conditions, which in turn offers tremendous opportunities to predict and control the growth and survival of desirable or undesirable microorganisms in food. Concurrently, NGS has facilitated the development of new genome-assisted approaches for correlating genotype and phenotype. The aim of this review is to provide a snapshot of the various possibilities that these new technologies are opening up in area of food microbiology, focusing the discussion mainly on lactic acid bacteria and yeasts associated with fermented food. The contribution of NGS to a system level understanding of food microorganisms is also discussed.
Next-generation sequencing and its potential impact on food microbial genomics / Solieri, L; Dakal, Tc; Giudici, P. - In: ANNALS OF MICROBIOLOGY. - ISSN 1590-4261. - ELETTRONICO. - 63:1(2013), pp. 21-37. [10.1007/s13213-012-0478-8]
Next-generation sequencing and its potential impact on food microbial genomics
Solieri L
;Dakal TC;Giudici P
2013
Abstract
Recent efforts of researchers to elucidate the molecular mechanisms of biological systems have been revolutionized greatly with the use of high throughput and cost-effective techniques such as next generation sequencing (NGS). Application of NGS to microbial genomics is not just limited to predict the prevalence of microorganisms in food samples but also to elucidate the molecular basis of how microorganisms respond to different food-associated conditions, which in turn offers tremendous opportunities to predict and control the growth and survival of desirable or undesirable microorganisms in food. Concurrently, NGS has facilitated the development of new genome-assisted approaches for correlating genotype and phenotype. The aim of this review is to provide a snapshot of the various possibilities that these new technologies are opening up in area of food microbiology, focusing the discussion mainly on lactic acid bacteria and yeasts associated with fermented food. The contribution of NGS to a system level understanding of food microorganisms is also discussed.File | Dimensione | Formato | |
---|---|---|---|
Solieri_NGS2012.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
437.57 kB
Formato
Adobe PDF
|
437.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris