The understanding of the physical mechanisms responsible of charge transport and degradation in high-k stacks is fundamental for the optimization of advanced logic (MOSFETs) and memory (RRAM, DRAM) devices. In this paper, we present a comprehensive physical model describing the charge transport and the degradation/breakdown processes in the HfO2 layer. This model allows gaining quantitative insights into the physics governing leakage current and degradation processes in HfO2 stacks, reproducing gate current and TDDB statistics

Physical modeling of charge transport and degradation in HfO 2 stacks for logic device and memory applications / Larcher, Luca; Padovani, Andrea; Vandelli, Luca; G., Bersuker. - In: ECS TRANSACTIONS. - ISSN 1938-5862. - STAMPA. - 37:1(2011), pp. 189-197. (Intervento presentato al convegno 3rd International Conference on Semiconductor Technology for Ultra Large Integrated Circuits and Thin Film Transistors, ULSIC vs. TFT III tenutosi a Hong Kong, chn nel 2011) [10.1149/1.3600739].

Physical modeling of charge transport and degradation in HfO 2 stacks for logic device and memory applications

LARCHER, Luca;PADOVANI, ANDREA;VANDELLI, LUCA;
2011

Abstract

The understanding of the physical mechanisms responsible of charge transport and degradation in high-k stacks is fundamental for the optimization of advanced logic (MOSFETs) and memory (RRAM, DRAM) devices. In this paper, we present a comprehensive physical model describing the charge transport and the degradation/breakdown processes in the HfO2 layer. This model allows gaining quantitative insights into the physics governing leakage current and degradation processes in HfO2 stacks, reproducing gate current and TDDB statistics
2011
3rd International Conference on Semiconductor Technology for Ultra Large Integrated Circuits and Thin Film Transistors, ULSIC vs. TFT III
Hong Kong, chn
2011
37
189
197
Larcher, Luca; Padovani, Andrea; Vandelli, Luca; G., Bersuker
Physical modeling of charge transport and degradation in HfO 2 stacks for logic device and memory applications / Larcher, Luca; Padovani, Andrea; Vandelli, Luca; G., Bersuker. - In: ECS TRANSACTIONS. - ISSN 1938-5862. - STAMPA. - 37:1(2011), pp. 189-197. (Intervento presentato al convegno 3rd International Conference on Semiconductor Technology for Ultra Large Integrated Circuits and Thin Film Transistors, ULSIC vs. TFT III tenutosi a Hong Kong, chn nel 2011) [10.1149/1.3600739].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/655642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact