Total energy calculations within the Density Functional Theory have been carried out in order to investigate the structural, electronic, and optical properties of un-doped and doped silicon nanostructures of different size and different surface terminations. In particular the effects induced by the creation of an electron-hole pair on the properties of hydrogenated silicon nanoclusters as a function of dimension are discussed in detail showing the strong interplay between the structural andoptical properties of the system. The distortion induced on the structure by an electronic excitation of the cluster is analyzed and considered in the evaluation of the Stokes shift between absorption and emission energies. Besides we show how many-body effects crucially modify the absorption and emission spectra of the silicon nanocrystals. Starting from the hydrogenated clusters, different Si/O bonding at the cluster surface have been considered. We found that the presence of a Si-O-Si bridge bond originates significative excitonic luminescence features in the near-visible range. Concerning the doping, we consider B and P single- and co-doped Si nanoclusters. The neutral impurities formation energies are calculated and their dependence on the impurity position within the nanocrystal is discussed. In the case of co-doping the formation energy is strongly reduced,favoring this process with respect to the single doping. Moreover the band gap and the optical threshold are clearly red-shifted with respect to that of the pure crystals showing the possibility ofan impurity based engineering of the absorption and luminescence properties of Si nanocrystals.

First-Principles Study of Silicon Nanocrystals: Structural and Electronic Properties, Absorption, Emission, and Doping / OSSICINI, Stefano; BISI, Olmes; DEGOLI, Elena; MARRI, Ivan; F., IORI; E., LUPPI; MAGRI, Rita; R., POLI; G., CANTELE; D., NINNO; F., TRANI; M., MARSILI; O., PULCI; V., OLEVANO; M., GATTI; K., GAAL NAGY; A., INCZE; G., ONIDA. - In: JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY. - ISSN 1533-4880. - STAMPA. - 8:2(2008), pp. 479-492. [10.1166/jnn.2008.A009]

First-Principles Study of Silicon Nanocrystals: Structural and Electronic Properties, Absorption, Emission, and Doping.

OSSICINI, Stefano;BISI, Olmes;DEGOLI, Elena;MARRI, Ivan;MAGRI, Rita;
2008

Abstract

Total energy calculations within the Density Functional Theory have been carried out in order to investigate the structural, electronic, and optical properties of un-doped and doped silicon nanostructures of different size and different surface terminations. In particular the effects induced by the creation of an electron-hole pair on the properties of hydrogenated silicon nanoclusters as a function of dimension are discussed in detail showing the strong interplay between the structural andoptical properties of the system. The distortion induced on the structure by an electronic excitation of the cluster is analyzed and considered in the evaluation of the Stokes shift between absorption and emission energies. Besides we show how many-body effects crucially modify the absorption and emission spectra of the silicon nanocrystals. Starting from the hydrogenated clusters, different Si/O bonding at the cluster surface have been considered. We found that the presence of a Si-O-Si bridge bond originates significative excitonic luminescence features in the near-visible range. Concerning the doping, we consider B and P single- and co-doped Si nanoclusters. The neutral impurities formation energies are calculated and their dependence on the impurity position within the nanocrystal is discussed. In the case of co-doping the formation energy is strongly reduced,favoring this process with respect to the single doping. Moreover the band gap and the optical threshold are clearly red-shifted with respect to that of the pure crystals showing the possibility ofan impurity based engineering of the absorption and luminescence properties of Si nanocrystals.
8
2
479
492
First-Principles Study of Silicon Nanocrystals: Structural and Electronic Properties, Absorption, Emission, and Doping / OSSICINI, Stefano; BISI, Olmes; DEGOLI, Elena; MARRI, Ivan; F., IORI; E., LUPPI; MAGRI, Rita; R., POLI; G., CANTELE; D., NINNO; F., TRANI; M., MARSILI; O., PULCI; V., OLEVANO; M., GATTI; K., GAAL NAGY; A., INCZE; G., ONIDA. - In: JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY. - ISSN 1533-4880. - STAMPA. - 8:2(2008), pp. 479-492. [10.1166/jnn.2008.A009]
OSSICINI, Stefano; BISI, Olmes; DEGOLI, Elena; MARRI, Ivan; F., IORI; E., LUPPI; MAGRI, Rita; R., POLI; G., CANTELE; D., NINNO; F., TRANI; M., MARSILI; O., PULCI; V., OLEVANO; M., GATTI; K., GAAL NAGY; A., INCZE; G., ONIDA
File in questo prodotto:
File Dimensione Formato  
Jnn-A009.pdf

non disponibili

Tipologia: Pre-print dell'autore (bozza pre referaggio)
Dimensione 887.77 kB
Formato Adobe PDF
887.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/615129
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact