One of the main objectives of control algorithms for teleoperation systems is to have a master device mimicking the response of the remote environment, while the slave device is requested to behave as the human operator. In general, the remote environment is compliant, with a quite different behavior with respect to perfectly rigid surfaces (e.g. in surgery or humancentered applications). In these cases, the knowledge of the dynamical properties of the remote environment can be used in order to improve the transparency of the overall system. A number of analytical and computational models have been proposed in literature in order to describe the behavior of compliant materials but, for sake of simplicity, design and simulation of controllers for robotic telemanipulation are still tied to classical linear spring-damper models. On the other hand, previous experimental activities with soft materials and human tissues have demonstrated that they are characterized by dynamical effects (relaxation and creep phenomena), which cannot be taken into account by means of linear, low-order models. In this Chapter, we study the suitability of a class of nonlinear contact models to describe and emulate compliant visco-elastic environments. Their parameters, estimated on-line, can then be used to command a suitable behavior to the master device in order to render a better contact sensation to the user. © 2007 Springer-Verlag Berlin Heidelberg.

Environment Estimation in Teleoperation Systems / Biagiotti, Luigi; Melchiorri, Claudio. - STAMPA. - 31:(2007), pp. 195-216. [10.1007/978-3-540-71364-7_14]

Environment Estimation in Teleoperation Systems

BIAGIOTTI, Luigi;MELCHIORRI, CLAUDIO
2007

Abstract

One of the main objectives of control algorithms for teleoperation systems is to have a master device mimicking the response of the remote environment, while the slave device is requested to behave as the human operator. In general, the remote environment is compliant, with a quite different behavior with respect to perfectly rigid surfaces (e.g. in surgery or humancentered applications). In these cases, the knowledge of the dynamical properties of the remote environment can be used in order to improve the transparency of the overall system. A number of analytical and computational models have been proposed in literature in order to describe the behavior of compliant materials but, for sake of simplicity, design and simulation of controllers for robotic telemanipulation are still tied to classical linear spring-damper models. On the other hand, previous experimental activities with soft materials and human tissues have demonstrated that they are characterized by dynamical effects (relaxation and creep phenomena), which cannot be taken into account by means of linear, low-order models. In this Chapter, we study the suitability of a class of nonlinear contact models to describe and emulate compliant visco-elastic environments. Their parameters, estimated on-line, can then be used to command a suitable behavior to the master device in order to render a better contact sensation to the user. © 2007 Springer-Verlag Berlin Heidelberg.
2007
Advances in Telerobotics
9783540713630
GERMANIA
Environment Estimation in Teleoperation Systems / Biagiotti, Luigi; Melchiorri, Claudio. - STAMPA. - 31:(2007), pp. 195-216. [10.1007/978-3-540-71364-7_14]
Biagiotti, Luigi; Melchiorri, Claudio
File in questo prodotto:
File Dimensione Formato  
ImpedanceEstimation.pdf

Open access

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/607315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact