Objective - Mutations in LPL or APOC2 genes are recognized causes of inherited forms of severe hypertriglyceridemia. However, some hypertrigliceridemic patients do not have mutations in either of these genes. Because inactivation or hyperexpression of APOA5 gene, encoding apolipoprotein A-V (apoA-V), causes a marked increase or decrease of plasma triglycerides in mice, and because some common polymorphisms of this gene affect plasma triglycerides in humans, we have hypothesized that loss of function mutations in APOA5 gene might cause hypertriglyceridemia. Methods and Results - We sequenced APOA5 gene in 10 hypertriglyceridemic patients in whom mutations in LPL and APOC2 genes had been excluded. One of them was found to be homozygous for a mutation in APOA5 gene ( c. 433 C > T, Q145X), predicted to generate a truncated apoA-V devoid of key functional domains. The plasma of this patient was found to activate LPL in vitro less efficiently than control plasma, thus suggesting that apoA-V might be an activator of LPL. Ten carriers of Q145X mutation were found in the patient's family; 5 of them had mild hypertriglyceridemia. Conclusions - As predicted from animal studies, apoA-V deficiency is associated with severe hypertriglyceridemia in humans. This observation suggests that apoA-V regulates the secretion and/or catabolism of triglyceride-rich lipoproteins.
Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia / PRIORE OLIVA, Claudio; L., Pisciotta; G., Li Volti; M. P., Sambataro; A., Cantafora; A., Bellocchio; A., Catapano; Tarugi, Patrizia Maria; S., Bertolini; CALANDRA BUONAURA, Sebastiano. - In: ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY. - ISSN 1079-5642. - STAMPA. - 25:2(2005), pp. 411-417. [10.1161/01.ATV.0000153087.36428.dd]
Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia
PRIORE OLIVA, Claudio;TARUGI, Patrizia Maria;CALANDRA BUONAURA, Sebastiano
2005
Abstract
Objective - Mutations in LPL or APOC2 genes are recognized causes of inherited forms of severe hypertriglyceridemia. However, some hypertrigliceridemic patients do not have mutations in either of these genes. Because inactivation or hyperexpression of APOA5 gene, encoding apolipoprotein A-V (apoA-V), causes a marked increase or decrease of plasma triglycerides in mice, and because some common polymorphisms of this gene affect plasma triglycerides in humans, we have hypothesized that loss of function mutations in APOA5 gene might cause hypertriglyceridemia. Methods and Results - We sequenced APOA5 gene in 10 hypertriglyceridemic patients in whom mutations in LPL and APOC2 genes had been excluded. One of them was found to be homozygous for a mutation in APOA5 gene ( c. 433 C > T, Q145X), predicted to generate a truncated apoA-V devoid of key functional domains. The plasma of this patient was found to activate LPL in vitro less efficiently than control plasma, thus suggesting that apoA-V might be an activator of LPL. Ten carriers of Q145X mutation were found in the patient's family; 5 of them had mild hypertriglyceridemia. Conclusions - As predicted from animal studies, apoA-V deficiency is associated with severe hypertriglyceridemia in humans. This observation suggests that apoA-V regulates the secretion and/or catabolism of triglyceride-rich lipoproteins.File | Dimensione | Formato | |
---|---|---|---|
APOA5 Paper-printed.pdf
Solo gestori archivio
Tipologia:
Versione pubblicata dall'editore
Dimensione
155.41 kB
Formato
Adobe PDF
|
155.41 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris