The present paper looks at Matveev's complexity (introduced in 1990 and based on the existence of a simple spine for each compact 3-manifold: see [Acta Appl. Math. 19 (1990), 101-130]) through another combinatorial theory for representing 3-manifolds, which makes use of particular edge-coloured graphs, called crystallizations. Crystallization catalogue $\tilde C^{26}$ for closed non-orientable 3-manifolds (due to [Acta Appl. Math. 54 (1999), 75-97]) is proved to yield upper bounds for Matveev's complexity of any involved 3-manifold. As a consequence, an improvement of Amendola and Martelli classification of closed non-orientable irreducible and $P^2$-irreducible 3-manifolds up to complexity c=6 is obtained.
Computing Matveev’s complexity of non-orientable 3-manifolds via crystallization theory / Casali, Maria Rita. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - STAMPA. - 144:(1-3)(2004), pp. 201-209.
Data di pubblicazione: | 2004 |
Titolo: | Computing Matveev’s complexity of non-orientable 3-manifolds via crystallization theory |
Autore/i: | Casali, Maria Rita |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.topol.2004.04.010 |
Rivista: | |
Volume: | 144 |
Fascicolo: | (1-3) |
Pagina iniziale: | 201 |
Pagina finale: | 209 |
Codice identificativo ISI: | WOS:000224713600011 |
Codice identificativo Scopus: | 2-s2.0-4944219641 |
Citazione: | Computing Matveev’s complexity of non-orientable 3-manifolds via crystallization theory / Casali, Maria Rita. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - STAMPA. - 144:(1-3)(2004), pp. 201-209. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
Casali_TAIA_2004.pdf | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris