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Abstract

The present paper looks atMatveev’s complexity(introduced in 1990 and based on the existenc
asimple spinefor each compact 3-manifold: see [Acta Appl. Math. 19 (1990) 101]) through an
combinatorial theory for representing 3-manifolds, which makes use of particular edge-co
graphs, calledcrystallizations.

Crystallization cataloguẽC 26 for closed non-orientable 3-manifolds (due to [Acta Appl. Math.
(1999) 75]) is proved to yield upper bounds for Matveev’s complexity of any involved 3-manifo

As a consequence, an improvement of Amendola and Martelli classification of closed
orientable irreducible andP2-irreducible 3-manifolds up to complexityc = 6 is obtained.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In 1990, Matveev [15] introduced an interesting notion ofcomplexityfor 3-manifolds,
based on the existence, for each compact 3-manifoldM3, of a simple spine, i.e., a sub-
polyhedronP ⊂ IntM3 with the property that the link of each of its points can
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geometriche continue”).
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embedded in∆ (the 1-skeleton of the 3-simplex) and such thatM3 — or M3 minus an
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open 3-ball, in case∂M3 = ∅ — collapses toP .

Definition 1 [15]. For each compact 3-manifoldM3, (Matveev’s) complexityc(M3) of M3

is defined as the minimal number of vertices (i.e., points whose link is homeomorphic∆)
of any simple spine ofM3.

As Matveev himself points out in his foundational paper, complexitymeasures how
complicated a combinatorial description of the manifold must be; moreover, additivity
property and finiteness property are proved to hold for complexity function, at least w
the most interesting classes of 3-manifolds (see, for example, [15] for compact orie
irreducible 3-manifolds and [16] for compact irreducible andP

2-irreducible non-orientabl
3-manifolds).

In the last 25 years, many results have been obtained, in order to classify (clas
3-manifolds with known complexity. In particular:

• as far as closed irreducible orientable 3-manifolds are concerned, complete c
cation is obtained up to complexityc = 6 in [15] (via computer enumeration of a
possible minimal spines), and then up to complexityc = 9 in [16] (by means of a suit
able decomposition intobricks, algorithmically performed with the aid of computer

• the first attempt to classify non-orientable 3-manifolds by means of complexity i
to [1], and concerns closed irreducible andP

2-irreducible non-orientable manifold
up to complexityc = 6 (by means of a purely theoretical application of bric
decomposition).

The present paper looks at Matveev’s complexity from a slightly different point of v
i.e., through another combinatorial theory for representing 3-manifolds, which make
of particular edge-coloured graphs, calledcrystallizations(see [11] or [2] for a survey on
this representation theory, for PL-manifolds of arbitrary dimension).

The attention is fixed upon the whole class of closed non-orientable 3-manifold
which a classification in terms of crystallizations is performed in [5]:

Proposition 1 [5, Theorem 1].Exactly seven closed connected prime non-orientabl3-
manifolds exist, which admit a crystallization of order26 at most: they are the four

Euclidean non-orientable3-manifolds(denoted byE
3

Bi
, for i ∈ {1,2,3,4}), the nontrivial

S
2-bundle overS

1 (denoted byS
2 ×̃S

1), the topological product between the re

projective planeRP
2 andS

1 (denoted byRP
2 × S

1), and the torus bundle1 TB
( 0 1

1 −1

)
.

1 For each matrixA ∈ GL(2;Z), we denote byTB(A) the torus bundle overS1 with monodromy induced
by A, i.e., the quotientTB(A) = T ×[0,1]

∼A
, where the equivalence relation∼A is given by(x,0) ∼A (φ̃A(x),1),

∀x ∈ T , φ̃A being the punctured homeomorphism(T , x0) → (T , x0) (x0 ∈ T ) havingA as an associated matri
Note that two torus bundlesTB(A) andTB(A′) are equivalent if and only ifA′ is conjugate to eitherA or A−1

in GL(2;Z). Within crystallization theory a procedure exists, which allows to construct, directly from any m
A ∈ GL(2;Z), an edge-coloured graphΓ (A) representing the torus bundleTB(A) (see [6]).
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to give an estimation of Matveev’s complexityc(M3) from any crystallization representin
M3, the above catalogue obviously yields upper bounds for Matveev’s complexity o
involved manifold. The interesting fact is that forS

2 ×̃S
1 and for the four Euclidean non

orientable 3-manifolds these upper bounds coincide with the precise value of comp
as computed in [1], whileTB

( 0 1
1 −1

)
is proved to have complexity� 6 (despite the stateme

of [1, Theorem 1.2]: see Section 3).
As a consequence, we can state the following improvement of Amendola and M

result:

Proposition 2.

• S
2 ×̃S

1 is the only closed non-orientable prime andP
2-irreducible 3-manifold with

complexityc = 0.
• No closed non-orientable irreducible andP

2-irreducible3-manifold admits complexit
c, with 1� c � 5.

• The only closed non-orientable irreducible andP2-irreducible 3-manifolds with
complexityc = 6 are the four Euclidean non-orientable3-manifolds and the toru
bundle(with geometry Sol) TB

( 0 1
1 −1

)
.

In particular, note thatTB
( 0 1

1 −1

)
has a non-Seifert geometry; this fact throws a n

light on the comparison between geometric structures of 3-manifolds with incre
complexity, in the orientable and non-orientable case (see [1, paragraph 1]).

The analysis performed in the present paper may be likewise repeated for other e
catalogues of 3-manifolds represented via crystallizations);2 results obtained in the non
orientable case naturally suggest the following

Open problem. It would be interestingto find other classes of3-manifolds for which
Matveev’s complexity may be directly computed from minimal edge-coloured grap
better, to give a characterization of the classes of3-manifolds for which this happens.

Finally, we point out that in [5], where the notion ofgem-complexityfor a closed
3-manifold M3 was introduced, as a measure of the minimum order of a colo
graph representingM3, it was suggested as an interesting ideato analyze the existin
relationships between Matveev’s complexity and gem-complexity of closed3-manifolds.

As far as this matter is concerned, we can now make the following

Remark 1. Classification of irreducible andP2-irreducible non-orientable 3-manifolds u
to Matveev’s complexityc = 6 exactly coincides with classification of the same manifo
up to gem-complexityk = 12.

2 A catalogue concerning the whole class of orientable 3-manifolds is described in [14], while [2,
Proposition 8.5] and [3] concern orientable 3-manifolds of Heegaard genus 2.
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2. GM-complexity of (non-orientable) 3-manifolds
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As already pointed out, the basic objects of crystallization theory are edge-co
graphs, which are a representation tool for general piecewise linear (PL) manifolds, w
assumptions about dimension, connectedness, orientability or boundary properties. In th
present work, however, all manifolds are assumed to be closed and connected, of dim
n = 3; thus, we will restrict our attention to basic notions and results of the theory, de
only with this restricted class of PL-manifolds.

Definition 2. A 4-coloured graphis a pair(Γ, γ ), whereΓ = (V (Γ ),E(Γ )) is a regular
multigraph of degree four3 andγ :E(Γ ) → ∆4 = {0,1,2,3} is a proper edge-coloratio
(i.e.,γ (e) �= γ (f ) for every adjacent edgese, f ∈ E(Γ )).

The elements of the set∆4 = {0,1,2,3} are said to becoloursof Γ ; thus, for everyi ∈
∆3, ani-coloured edgeis an elemente ∈ E(Γ ) such thatγ (e) = i. For everyi, j ∈ ∆4 let
Γ

î
(respectivelyΓi,j ) (respectivelyΓ

î,ĵ
) the subgraph obtained from(Γ, γ ) by deleting all

edges of colouri (respectively by deleting all edges of colourc ∈ ∆4−{i, j }) (respectively
by deleting all edges of colourc ∈ {i, j }). The connected components ofΓi,j are said to be
{i, j }-colouredcycles ofΓ , and their number is denoted bygi,j .

A 4-coloured graph(Γ, γ ) is said to representa 3-manifold M3 if M3 is PL-
homeomorphic to|K(Γ )|, K(Γ ) being the 3-dimensional ball-complex4 associated to
(Γ, γ ) by the following rules:

• for every vertexv ∈ V (Γ ), take a 3-ballσ(v) abstractly isomorphic to a 3-simple
and label injectively its four vertices by the colours of∆4;

• for every i-coloured edge betweenv,w ∈ V (Γ ), identify the vertices ofσ(v)

and σ(w) which are labelled by the same colourc ∈ ∆4 − {i}, and the spanne
bidimensional faces.

According to [14], a 4-coloured graph(Γ, γ ) representing a PL 3-manifoldM3 is also
called agem(=graph encoded manifold) ofM3. Moreover, it is easy to check that, in ca
(Γ, γ ) being a gem ofM3, thenM3 results to be orientable (respectively non-orienta
iff Γ is bipartite (respectively non-bipartite).

In particular, a gem(Γ, γ ) of M3 is said to be acrystallizationof M3 if, for every
i ∈ ∆4, the subgraphΓ

î
is connected (or equivalently, ifK(Γ ) has exactly four vertices)

moreover, a crystallization is said to berigid if every pair of equally coloured edges belo
to one common bicoloured cycle at most.

Proposition 3 [5, Proposition 4].Every closed connected3-manifold M3 admits a
rigid crystallization. Moreover, ifM3 is handle-free(i.e., it admits no connected su

3 For graph theory, we refer to [18].
4 Note that, in general,K(Γ ) fails to be a simplicial complex, since its balls may intersect in more than

face (according to [13], it may be defined to be apseudocomplex); notwithstanding this, we will always ca
h-simplicesits h-balls, for everyh � 3.
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M3, with #V (Γ ) = 2p, then a rigid crystallization(	Γ , γ̄ ) of M3 exists, with#V (	Γ ) � 2p;
in particular, the equality#V (	Γ ) = 2p holds only if(Γ, γ ) is itself a rigid crystallization
of M3.

As a consequence, a complete cataloguing of all prime orientable (respectivel
orientable) 3-manifolds may be performed by means of algorithmic construction
possible bipartite (respectively non-bipartite) rigid crystallizations, with increasing numb
of vertices.

Moreover, the efficiency of the previous cataloguing may be improved throug
definition of a suitablecode(whose algorithmic calculation may be easily implemente
which allows to effectively recognize the so-called (colour-) isomorphic graphs, i.e.,
coloured graphs coinciding up to permutations of the vertex set and/or of the colo
see [8] for details.

As far as the non-orientable case is concerned, the catalogue has been effe
produced and analyzed in [5] for up to 26 vertices, to reach the complete identificati
of all involved 3-manifolds (see [5, Proposition 7]).

As a direct consequence, the classification already stated in Proposition 1 follows.

It is well known (see [11] or [2], together with their references) that, if(Γ, γ ) is a
bipartite (respectively non-bipartite) crystallization ofM3, for every pairα,β ∈ ∆3, there
exists a regular embedding5 iα,β :Γ → Fα,β , Fα,β being a closed orientable (respective
non-orientable) surface of genusgα,β − 1. Moreover, the surfaceFα,β , together with the
imagesx (respectivelyy) of all {α,β}-coloured (respectively{α̂, β̂}-coloured) cycles o
(Γ, γ ), but one arbitrarily chosen, yields a Heegaard diagram ofM3.

Now, if D (respectivelyD′) is an arbitrarily chosen{α,β}-coloured (respectively{α̂, β̂}-
coloured) cycle of(Γ, γ ), let us denote byRD,D′ the set of regions ofFα,β − (x ∪ y) =
Fα,β − iα,β((Γα,β −D) ∪ (Γ

α̂,β̂
−D′)).

The following definition introduces the (purely combinatorial) notion ofGem–Matveev
complexity, at first for a crystallizationΓ of M3, and then for any closed 3-manifoldM3.

The reason of the terminology will appear clearly from the subsequent result.

Definition 3. Let M3 be a closed 3-manifold, and let(Γ, γ ) be a crystallization ofM3.

With the above notations,Gem–Matveev complexityof Γ is defined as the non-negati
integer

cGM(Γ ) = min
{
#V (Γ ) − #

(
V (D) ∪ V

(
D′) ∪ V (Ξ)

)
/D ∈ Γα,β,

D′ ∈ Γ
α̂,β̂

, Ξ ∈ RD,D′
}
,

5 The embedding of a coloured graph into a surface is said to beregular if the connected components split b
the image of the graph onto the surface are open balls (calledregionsof the embedding) bounded by the ima
of bicoloured cycles. Note that this property, which holds in arbitrary dimension, is the starting point for th
definition of a combinatorial PL-manifold invariant, calledregular genus, extending the notions of genus of
surface and of Heegaard genus of a 3-manifold (see [12]). Interesting results about classification of PL-manifo
via regular genus may be found, for example, in [10,7,4,9].
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while Gem–Matveev complexityof M3 is defined as the minimum value ofGem–Matveev
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complexityof any minimal6 crystallization ofM3:

cGM
(
M3) = min

{
cGM(Γ )/Γ minimal,

∣∣K(Γ )
∣∣ = M3}.

Proposition 4. For every closed3-manifoldM3, Gem–Matveev complexity gives an up
bound for Matveev’s complexity ofM3:

c
(
M3) � cGM

(
M3).

Proof. Let (Γ, γ ) be a crystallization ofM3. As already stated,

(Fα,β ,x,y) = (
Fα,β , iα,β(Γα,β −D), iα,β

(
Γ

α̂,β̂
−D′))

is an Heegaard diagram forM3. According to [15, Proposition 3], an associated sim
spineP of M3 may be obtained from any Heegaard diagram(Fα,β,x,y) by considering
the simple polyhedron union ofFα,β and the meridional discs of the two handlebod
and then by removing the 2-component corresponding to an arbitrary regionΞ of
Fα,β − (x ∪ y). Since the number of vertices ofP obviously equals #(V (Γ ) − #(V (D) ∪
V (D′) ∪ V (Ξ)), the existence of a simple spine forM3 having c � cGM(Γ ) vertices
directly follows. �

Now, we are able to prove results about Gem–Matveev-complexity arising
catalogueC̃(26) (i.e., the complete catalogue of non-orientable3-manifolds admitting a
rigid non-bipartite crystallization of order26 at most). Since Gem–Matveev-complex
turns out to be additive, withiñC(26), with respect to connected sum of 3-manifolds7 we
only fix the attention upon prime 3-manifolds.

Proposition 5.

(a) cGM(S2 ×̃S
1) = 0;

(b) cGM(RP
2 × S

1) = 1;
(c) cGM(E

3

Bi
) = 6, ∀i ∈ {1,2,3,4};

(d) cGM(TB
( 0 1

1 −1

)
) = 6;

Proof. Since the proof is similar for all involved 3-manifolds, we explicitly give it just
one case, i.e., case (d), concerningM3 = T B

( 0 1
1 −1

)
.

6 Here, the notion of minimality is referred to the order of the edge-coloured graph; hence, by Propositio
for any handle-free 3-manifoldM3, cGM(M3) is realized by a rigid crystallization ofM3.

7 A direct calculation, possibly performed with the aid of computer, allows to easily check additivity pro
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According to [5], the minimal rigid crystallization representingTB
( 0 1

1 −1

)
is the order

twenty-six edge-coloured graphΓ (209) depicted in Fig. 1, whose code is

DABCGEFJHIMKL

JMLEDCHGKAIFB

KFjLMiAmf cGDh

gIJ lHbkEBCade.

A direct check allows us to say that, ifD is the {0,1}-coloured cycle containin
vertices {a,A,b,B, c,C,d,D} and D′ is the {2,3}-coloured cycle containing ve
tices {b,M,e,D, l,F }, then by choosing as regionΞ the one bounded by vertice
{C,f,g,H, i,K,L, c} ∪ {C,J, j, c}, #V (Γ (209)) − #(V (D) ∪ V (D′) ∪ V (Ξ)) = 6 is ob-
tained.

Moreover, it is easy to prove that, for anyΓ ∈ C̃(26) representingTB
( 0 1

1 −1

)
, and for any

choice ofD, D′ andΞ , #V (Γ ) − #(V (D) ∪ V (D′) ∪ V (Ξ)) � 6 holds. �

3. Applications to Matveev’s complexity of non-orientable 3-manifolds

As already pointed out in the introduction, the only existing result about Matve
complexity for non-orientable 3-manifolds is due to Amendola and Martelli:

Proposition 6 [1, Theorem 1.2].There are no closed non-orientable irreducible andP
2-

irreducible3-manifolds with complexityc � 5 and the only ones with complexityc = 6 are
the four euclidean ones.

The above statement is clearly contradicted—via Proposition 4—by results of the
previous section, in particular as far as torus bundleTB

( 0 1
1 −1

)
is concerned. Thus, th

statement needs to be improved, as it appears in Proposition 2.



208 M.R. Casali / Topology and its Applications 144 (2004) 201–209

ion 4,
ils

oof of
and

that
rix
d

either

as

ved by

n-
c-

e 2-
Fig. 2.

Proof of Proposition 2. Note that, as a consequence of Proposition 5(d) and Proposit
c
(
TB

( 0 1
1 −1

))
� 6 directly follows. Actually, the original proof of [1, Theorem 1.2] fa

exactly in the last line before conclusion: the statement “. . . ψ is read as a matrix with trace
between−2 and2. Such a matrix is not hyperbolic, thereforeM is flat” (see [1, p. 169]) is
probably based on a similar statement by Scott (see [17, p. 481], part (iii) of the pr
Theorem 5.5:“If |a + d| < 2, then. . . the eigenvalues are distinct complex numbers
are roots of unity. It follows thatA is periodic so thatM admits aE3-structure”), but it is
incorrect, as matrixĀ = ( 0 1

1 −1

)
clearly proves. On the other hand, it is easy to check

any matrixA ∈ GL(2,Z) with detA = −1 and trace 0 is really periodic, while any mat
A ∈ GL(2,Z) taking values in the set{0,1,−1} (as it follows from the fact—pointe
out by Amendola and Martelli—thatψ(0),ψ(∞) ∈ {−1,0,1,∞}), with detA = −1 and
trace−1 (respectively with trace 1) is conjugate tōA (respectively to(Ā)−1 = ( 1 1

1 0

)
).

This proves the third statement, since the associated torus bundle turns out to be
an euclidean non-orientable 3-manifold, or torus bundleT B

( 0 1
1 −1

)
. Moreover, according

to [17, Theorem 5.3(i)], the fact that̄A is hyperbolic (i.e., neither of its eigenvalues h
absolute value 1) directly impliesTB(Ā) to have geometry Sol.

As far as the first and second statements are concerned, they may be pro
Amendola and Martelli arguments (see [1]).�
Remark 2. As a consequence of our method, minimal spines for each closed no
orientable irreducible andP2-irreducible 3-manifold with complexity six may be constru
tively produced. For example, a 6-vertices spine forTB

( 0 1
1 −1

)
is obtained—in virtue of

the proof of Proposition 4—from the Heegaard diagram of Fig. 2, by removing th
component associated to the selected region.
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