Available online at www.sciencedirect.com

Topology

SCIENCE DIRECT?® s

£ @ and its
il Applications

ELSEVIER Topology and its Applications 144 (2004) 201-209 _

www.elsevier.com/locate/topol

Computing Matveev’s complexity of non-orientable
3-manifolds via crystallization theory

Maria Rita Casali

Dipartimento di Matematica Pura ed Applicata, Universita di Modena e Reggio Emilia,
Via Campi 213 B, 1-41100 Modena, Italy

Received 17 December 2003; received in revised form 31 March 2004; accepted 25 April 2004

Abstract

The present paper looksdatveev's complexitfintroduced in 1990 and based on the existence of
asimple spindor each compact 3-manifold: see [Acta Appl. Math. 19 (1990) 101]) through another
combinatorial theory for representing 3-manifolds, which makes use of particular edge-coloured
graphs, calledrystallizations

Crystallization catalogué28 for closed non-orientable 3-manifolds (due to [Acta Appl. Math. 54
(1999) 75]) is proved to yield upper bounds for Matveev's complexity of any involved 3-manifold.

As a consequence, an improvement of Amendola and Martelli classification of closed non-
orientable irreducible anBi2-irreducible 3-manifolds up to complexity= 6 is obtained.
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1. Introduction

In 1990, Matveev [15] introduced an interesting notiorcomplexityfor 3-manifolds,
based on the existence, for each compact 3-manifotd of a simple spinei.e., a sub-
polyhedronP c IntM?3 with the property that the link of each of its points can be

Y Work performed under the auspicies of the GNSAGH#tt®e CNR (National Research Council of Italy)
and financially supported by MURST of Italy (project “Gtture geometriche delle varieta reali e complesse”)
and by Universita degli Studi di Modena e Reggio Emilia (project “Strutture finite e modelli discreti di strutture
geometriche continue”).

E-mail addresscasali@unimore.it (M.R. Casali).

0166-8641/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2004.04.010



202 M.R. Casali / Topology and its Applications 144 (2004) 201-209

embedded im (the 1-skeleton of the 3-simplex) and such th&t — or M3 minus an
open 3-ball, in cas@ M3 = ¢ — collapses taP.

Definition 1 [15]. For each compact 3-manifold3, (Matveev’s complexitye(M3) of M3
is defined as the minimal number of vertices (i.e., points whose link is homeomorphjc to
of any simple spine o#3.

As Matveev himself points out in his foundational paper, complexigasures how
complicated a combinatorial description of the manifold must fhereover, additivity
property and finiteness property are proved to hold for complexity function, at least within
the most interesting classes of 3-manifolds (see, for example, [15] for compact orientable
irreducible 3-manifolds and [16] for compact irreducible &fdrreducible non-orientable
3-manifolds).

In the last 25 years, many results have been obtained, in order to classify (classes of)
3-manifolds with known complexity. In particular:

e as far as closed irreducible orientable 3-manifolds are concerned, complete classifi-
cation is obtained up to complexity= 6 in [15] (via computer enumeration of all
possible minimal spines), and then up to complexity 9 in [16] (by means of a suit-
able decomposition intbricks algorithmically performed with the aid of computer);

o the first attempt to classify non-orientable 3-manifolds by means of complexity is due
to [1], and concerns closed irreducible aBthirreducible non-orientable manifolds
up to complexityc = 6 (by means of a purely theoretical application of brick-
decomposition).

The present paper looks at Matveev’s complexity from a slightly different point of view,
i.e., through another combinatorial theory for representing 3-manifolds, which makes use
of particular edge-coloured graphs, cal@gstallizations(see [11] or [2] for a survey on
this representation theory, for PL-manifolds of arbitrary dimension).

The attention is fixed upon the whole class of closed non-orientable 3-manifolds, for
which a classification in terms of crystallizations is performed in [5]:

Proposition 1 [5, Theorem 1].Exactly seven closed connected prime non-orient8ble
manifolds exist, which admit a crystallization of ord26é at most they are the four

Euclidean non-orientabl8-manifolds(denoted byJE_3 fori € {1, 2, 3, 4}), the nontrivial
S?-bundle overS! (denoted byS? x S'), the topological product between the real
projective planéRP? andS* (denoted bRP? x S*), and the torus bundleTB(? *,).

1 For each matrix4 e GL(2; Z), we denote byTB(A) the torus bundle oves! with monodromy induced
by A, i.e., the quotienTB(A) = %2’1], where the equivalence relation, is given by(x, 0) ~4 (¢4 (x), 1),
Vx €T, ¢4 being the punctured homeomorphigif, xg) — (T', xg) (xg € T) having A as an associated matrix.
Note that two torus bundIeEB(A) andTB(A’) are equivalent if and only ifi” is conjugate to eitheA or A1
in GL(2; Z). Within crystallization theory a procedure exists, which allows to construct, directly from any matrix
A € GL(2; Z), an edge-coloured graphi(A) representing the torus bundI®&(A) (see [6]).
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Since an algorithmic computation (easily implementable via computer) directly allows
to give an estimation of Matveev’s complexityM 3) from any crystallization representing
M3, the above catalogue obviously yields upper bounds for Matveev’s complexity of any
involved manifold. The interesting fact is that f8f x S and for the four Euclidean non-
orientable 3-manifolds these upper bounds coincide with the precise value of complexity,
as computed in [1], Whilé’B((l’ _11) is proved to have complexity 6 (despite the statement
of [1, Theorem 1.2]: see Section 3).

As a consequence, we can state the following improvement of Amendola and Martelli
result:

Proposition 2.

e S?x St is the only closed non-orientable prime afé-irreducible 3-manifold with
complexityc = 0.

¢ No closed non-orientable irreducible aifd-irreducible3-manifold admits complexity
c,withl<c<5b.

e The only closed non-orientable irreducible arff-irreducible 3-manifolds with
complexityc = 6 are the four Euclidean non-orientabmanifolds and the torus
bundle(with geometry SHITB(Y ).

In particular, note thaTB((l’_ll) has a non-Seifert geometry; this fact throws a new
light on the comparison between geometric structures of 3-manifolds with increasing
complexity, in the orientable and non-orientable case (see [1, paragraph 1]).

The analysis performed in the present paper may be likewise repeated for other existing
catalogues of 3-manifolds reperged via crystallizations)results obtained in the non-
orientable case naturally suggest the following

Open problem. It would be interestingo find other classes d-manifolds for which
Matveev’s complexity may be directly computed from minimal edge-coloured graphs or,
better to give a characterization of the classes3afnanifolds for which this happens.

Finally, we point out that in [5], where the notion gem-complexityfor a closed
3-manifold M3 was introduced, as a measure of the minimum order of a coloured
graph representing/3, it was suggested as an interesting ideaanalyze the existing
relationships between Matveev's complexity and gem-complexity of Gasedhifolds

As far as this matter is concerned, we can now make the following

Remark 1. Classification of irreducible an@?-irreducible non-orientable 3-manifolds up
to Matveev’'s complexity: = 6 exactly coincides with classification of the same manifolds
up to gem-complexity = 12.

2A catalogue concerning the whole class of oriel@aB-manifolds is desdved in [14], while [2,
Proposition 8.5] and [3] concern orientable 3-manifolds of Heegaard genus 2.
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2. GM-complexity of (non-orientable) 3-manifolds

As already pointed out, the basic objects of crystallization theory are edge-coloured
graphs, which are a representation tool for general piecewise linear (PL) manifolds, without
assumptions about dimsion, connectedness, orieritdy or boundary properties. In the
presentwork, however, all manifolds are assumed to be closed and connected, of dimension
n = 3; thus, we will restrict our attention to basic notions and results of the theory, dealing
only with this restricted class of PL-manifolds.

Definition 2. A 4-coloured graphs a pair(I', y), wherel”’ = (V(I"), E(I")) is a regular
multigraph of degree fodrandy : E(I') — A4 = {0, 1, 2, 3} is a proper edge-coloration
(i.e.,y(e) #y(f) for every adjacent edges f € E(I")).

The elements of the set, = {0, 1, 2, 3} are said to beoloursof I"; thus, for every e
Az, ani-coloured edges an elemené € E(I") such thaty (e) = i. For everyi, j € A4 let
I’; (respectivelyr;, ;) (respectivelyl’; -) the subgraph obtained fro(#’, ) by deleting all
edges of colour (respectively by de’[’eting all edges of coleus A4 — {i, j}) (respectively
by deleting all edges of coloure {i, j}). The connected componentsidf; are said to be
{i, j}-colouredcycles ofI", and their number is denoted gy ;.

A 4-coloured graph(I", y) is said torepresenta 3-manifold M3 if M3 is PL-
homeomorphic tdK (I")|, K(I") being the 3-dimensional ball-compfeassociated to
(I, y) by the following rules:

o for every vertexv € V(I'), take a 3-balb (v) abstractly isomorphic to a 3-simplex,
and label injectively its four vertices by the coloursAf;

e for every i-coloured edge between,w € V(I'), identify the vertices ofo (v)
and o (w) which are labelled by the same coloare A4 — {i}, and the spanned
bidimensional faces.

According to [14], a 4-coloured graplf”, ) representing a PL 3-manifoltd® is also
called agem(=graph excoded nanifold) of M3. Moreover, it is easy to check that, in case
(I, ) being a gem of13, then M2 results to be orientable (respectively non-orientable)
iff I" is bipartite (respectively non-bipartite).

In particular, a gem(I", y) of M2 is said to be arystallizationof M2 if, for every
i € Ay, the subgrapli’; is connected (or equivalently, K (I") has exactly four vertices);
moreover, a crystallization is said to bgid if every pair of equally coloured edges belong
to one common bicoloured cycle at most.

Proposition 3 [5, Proposition 4].Every closed connecte@manifold M3 admits a
rigid crystallization. Moreover, ifM3 is handle-free(i.e., it admits no connected sum

3 For graph theory, we refer to [18].

4 Note that, in generalk (I") fails to be a simplicial complex, since its balls may intersect in more than one
face (according to [13], it may be defined to beseudocomplgx notwithstanding this, we will always call
h-simplicesits h-balls, for everyh < 3.
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decomposition, where one of the factors isgérburyle oveSY) and(rI, y) is any gem of
M3, with#V (I") = 2p, then arigid crystallization(I", 7) of M3 exists, with#V (I') < 2p;
in particular, the equality#V (I") = 2p holds only if(I", y) is itself a rigid crystallization
of M3,

As a consequence, a complete cataloguing of all prime orientable (respectively non-
orientable) 3-manifolds may be performed by means of algorithmic construction of all
possible bipartite (respectively non-bipartitigjid crystallizations, with increasing number
of vertices.

Moreover, the efficiency of the previous cataloguing may be improved through the
definition of a suitableode(whose algorithmic calculation may be easily implemented),
which allows to effectively recognize the so-calletblpur-) isomorphic graphsi.e.,
coloured graphs coinciding up to permutations of the vertex set and/or of the colour set:
see [8] for details.

As far as the non-orientable case is concerned, the catalogue has been effectively
produced and analyzed in [5] for up to 26 tiees, to reach the complete identification
of all involved 3-manifolds (see [5, Proposition 7]).

As a direct consequence, the classificatidready stated in Proposition 1 follows.

It is well known (see [11] or [2], together with their references) that/if y) is a
bipartite (respectively non-bipartite) crystallization @, for every paitw, f € As, there
exists a regular embeddi?lg,,,g :I' = Fy p, Fyp being a closed orientable (respectively
non-orientable) surface of gengs s — 1. Moreover, the surfacé, g, together with the

~

imagesx (respectivelyy) of all {«, 8}-coloured (respectivelya, 8}-coloured) cycles of
(I, y), but one arbitrarily chosen, yields a Heegaard diagraif &f

Now, if D (respectivelyD’) is an arbitrarily chosefw, 8}-coloured (respectivelfg, 8}-
coloured) cycle of I, y), let us denote byRp 1 the set of regions of, g — (XUY) =
Fop —ia,p((Tup — D) U (T 5 — D).

The following definition introduces th(purely combinatorial) notion dsem—Matveev
complexity at first for a crystallization™ of M2, and then for any closed 3-manifold?®.
The reason of the terminology will appear clearly from the subsequent result.

Definition 3. Let M2 be a closed 3-manifold, and léf", y) be a crystallization ofi/3.
With the above notation&em—Matveev complexitf I” is defined as the non-negative
integer

com(IN) =min{#V (') —#V(D)U V(D' )UV(E))/D € Iy p,
De FA,/g, E e RD,D/},

o

5 The embedding of a coloured graph into a surface is said teduéar if the connected components split by
the image of the graph onto the surface are open balls (catgdnsof the embedding) bounded by the image
of bicoloured cycles. Note that thisgperty, which holds in arbitrary diemsion, is the starting point for the
definition of a combinatorial PL-manifold invariant, calleegular genus extending the notions of genus of a
surface and of Heegaard genus of a 3-manifold (see [12§rdsting results about classification of PL-manifolds
via regular genus may be found, for example, in [10,7,4,9].
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while Gem—Matveev complexitf M2 is defined as the minimum value Gem—-Matveev
complexityof any minimal® crystallization ofa3:

cem(M3) = min{com(IN)/I" minimal, |K (M| = M3)}.

Proposition 4. For every close@®-manifold M3, Gem—Matveev complexity gives an upper
bound for Matveev’s complexity &f°:

C(M3) < CGM(M3)-

Proof. Let (I", ) be a crystallization oM23. As already stated,
(Fap:%.Y) = (Fap ia.p(Ta,p = D), iap (T g — D))

is an Heegaard diagram far3. According to [15, Proposition 3], an associated simple
spine P of M3 may be obtained from any Heegaard diagrdm g, X, y) by considering
the simple polyhedron union df, g and the meridional discs of the two handlebodies,
and then by removing the 2-component corresponding to an arbitrary regiai
Fy g — (xUYy). Since the number of vertices & obviously equals & (I") — #(V (D) U
V(D) U V(&8)), the existence of a simple spine faf3 having ¢ < cgm(I”) vertices
directly follows. O

Now, we are able to prove results about Gem—Matveev-complexity arising from
catalogue@w (i.e., the complete catogue of non-orientabl8-manifolds admitting a
rigid non-bipartite crystallization of ord&26 at most). Since Gem—Matveev-complexity
turns out to be additive, withig' 2®, with respect to connected sum of 3-manifdloee
only fix the attention upon prime 3-manifolds.

Proposition 5.

(@) com(S? xSt =0;

(b) com(RP? x §Y) =1;

(©) com(5)=6,Vi €(1,2.3,4);
(d) com(TB(] %) =6;

Proof. Since the proof is similar for all involved 3-manifolds, we explicitly give it just for

one case, i.e., case (d), concernig=7B(? *)).

6 Here, the notion of minimality is referred to the ora the edge-coloured graph; hence, by Proposition 3,
for any handle-free 3-manifoldif3, cgpm(M3) is realized by a rigid crystallization a3
7 Adirect calculation, possibly performed with the aid of computer, allows to easily check additivity property.
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Fig. 1.

According to [5], the minimal rigid crystallization representifig(> %) is the order
twenty-six edge-coloured graght®®® depicted in Fig. 1, whose code is

DABCGEFJHIMKL
JMLEDCHGKAIFB
KFjLMiAmfcGDh
gl JIHbKkEBCade.

A direct check allows us to say that, i is the {0, 1}-coloured cycle containing
vertices {a, A,b, B,c,C,d, D} and D’ is the {2, 3}-coloured cycle containing ver-
tices {b, M, e, D,l, F}, then by choosing as regioA the one bounded by vertices
(C, f.g.H,i,K,L,c}U{C,J,j c}, #V(I"'?%9) —#V(D)U V(D) U V(E)) =6 is ob-
tained.

Moreover, it is easy to prove that, for aliye €29 representing’ B(g’ _11), and for any
choice of D, D" and =, #V(I') —#(V(D)U V(D) U V(E)) > 6 holds. O

3. Applicationsto Matveev's complexity of non-orientable 3-manifolds

As already pointed out in the introduction, the only existing result about Matveev’s
complexity for non-orientable 3-mdnids is due to Amendola and Martelli:

Proposition 6 [1, Theorem 1.2]There are no closed non-orientable irreducible aPd
irreducible 3-manifolds with complexity < 5 and the only ones with complexity= 6 are
the four euclidean ones.

The above statement is clearly contiitdd—via Proposition 4-by results of the
previous section, in particular as far as torus bunw(l’_ll) is concerned. Thus, the
statement needs to be improved, as it appears in Proposition 2.
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Fig. 2.

Proof of Proposition 2. Note that, as a consequence of Proposition 5(d) and Proposition 4,
c(TB(?_ll)) < 6 directly follows. Actually, the original proof of [1, Theorem 1.2] fails
exactly in the last line before conclusion: the statementy is read as a matrix with trace
between-2 and2. Such a matrix is not hyperbolic, therefavg is flat’ (see [1, p. 169]) is
probably based on a similar statement by Scott (see [17, p. 481], part (iii) of the proof of
Theorem 5.5!If |a + d| < 2, then. .. the eigenvalues are distinct complex numbers and
are roots of unity. It follows tha is periodic so that\f admits aE3-structure”), but it is
incorrect, as matrid = (i’ _11) clearly proves. On the other hand, it is easy to check that
any matrixA € GL(2, Z) with detA = —1 and trace 0 is really periodic, while any matrix

A € GL(2,7Z) taking values in the sef0, 1, —1} (as it follows from the fact—pointed

out by Amendola and Martelli—that (0), ¥ (c0) € {—1, 0, 1, 00}), with detA = —1 and
trace—1 (respectively with trace 1) is conjugate o (respectively to(A)~1 = (ié))

This proves the third statement, since the associated torus bundle turns out to be either

an euclidean non-orientable 3-manifold, or torus bum’jli(g _11). Moreover, according
to [17, Theorem 5.3(i)], the fact that is hyperbolic (i.e., neither of its eigenvalues has
absolute value 1) directly impli€EB(A) to have geometry Sol.

As far as the first and second statements are concerned, they may be proved by
Amendola and Martelli arguments (see [1])o

Remark 2. As a consequence of our method,nmal spines for each closed non-
orientable irreducible anB2-irreducible 3-manifold with complexity six may be construc-
tively produced. For example, a 6-vertices spineTa((l’ _11) is obtained—in virtue of

the proof of Proposition 4—from the Heegaard diagram of Fig. 2, by removing the 2-
component associated to the selected region.
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