A nonlocal, energy based impact ionisation model for bipolar transistors is implemented into a general purpose circuit simulator. With respect to conventional, either empirical or electric field based, models, the proposed approach enables a more physical and accurate description of impact ionisation effects in modern, high speed bipolar transistors, where non-negligible nonstationary transport effects take place as a consequence of the strong spatial variations in the electric field at the base-collector junction. The conventional base resistance model is also modified, to take into account the base resistance dependence on bias in the presence of an impact ionisation induced reverse base current. Neglecting the influence of the reverse base current on the base resistance can result in an underestimation of the degradation of both DC and switching performance of bipolar transistors due to impact ionisation. The implemented models are validated by comparison with experimental results obtained from devices of two different technologies.

SPICE modelling of impact ionisation effects in silicon bipolar transistors / Verzellesi, Giovanni; A., Dal Fabbro; Pavan, Paolo; L., Vendrame; E., Zabotto; A., Zanini; A., Chantre; E., Zanoni. - In: IEE PROCEEDINGS. CIRCUITS, DEVICES AND SYSTEMS. - ISSN 1350-2409. - STAMPA. - 143:(1996), pp. 33-40.

SPICE modelling of impact ionisation effects in silicon bipolar transistors

VERZELLESI, Giovanni;PAVAN, Paolo;
1996

Abstract

A nonlocal, energy based impact ionisation model for bipolar transistors is implemented into a general purpose circuit simulator. With respect to conventional, either empirical or electric field based, models, the proposed approach enables a more physical and accurate description of impact ionisation effects in modern, high speed bipolar transistors, where non-negligible nonstationary transport effects take place as a consequence of the strong spatial variations in the electric field at the base-collector junction. The conventional base resistance model is also modified, to take into account the base resistance dependence on bias in the presence of an impact ionisation induced reverse base current. Neglecting the influence of the reverse base current on the base resistance can result in an underestimation of the degradation of both DC and switching performance of bipolar transistors due to impact ionisation. The implemented models are validated by comparison with experimental results obtained from devices of two different technologies.
1996
143
33
40
SPICE modelling of impact ionisation effects in silicon bipolar transistors / Verzellesi, Giovanni; A., Dal Fabbro; Pavan, Paolo; L., Vendrame; E., Zabotto; A., Zanini; A., Chantre; E., Zanoni. - In: IEE PROCEEDINGS. CIRCUITS, DEVICES AND SYSTEMS. - ISSN 1350-2409. - STAMPA. - 143:(1996), pp. 33-40.
Verzellesi, Giovanni; A., Dal Fabbro; Pavan, Paolo; L., Vendrame; E., Zabotto; A., Zanini; A., Chantre; E., Zanoni
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/303470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact