The deformation induced onto silicon by the formation of Ti self-aligned silicides (salicides) in shallow trench isolation structures has been investigated by the convergent beam electron diffraction technique (CBED) in the transmission electron microscope (TEM). The splitting of the high order Laue zone (HOLZ) lines in the CBED patterns taken in TEM cross sections close to the salicide/silicon interface has been explained assuming that the salicide grains induce a local bending of the lattice planes of the underlying matrix. This bending, which affects in opposite sense the silicon areas below adjacent grains, decreases with the distance from the interface, eventually vanishing at a depth of 300-400 nm. The proposed strain field has been implemented into a fully dynamical simulation of the CBED patterns and has proved to be able to reproduce both the asymmetry of the HOLZ line splitting and the associated subsidiary fringes. This model is confirmed by the shift of a Bragg contour observed in large angle CBED patterns, taken in a cross section cut along a perpendicular direction. The whole experimental results cannot be explained by just a strain relaxation of the TEM cross section, induced by the salicide film onto the underlying silicon.

Convergent beam electron diffraction investigation of strain induced by Ti self-aligned silicides in shallow trench Si isolation structures / Armigliato, A; Spessot, A; Balboni, R; Benedetti, A; Carnevale, G; Frabboni, Stefano; Mastracchio, G; Pavia, G.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - STAMPA. - 99:6(2006), pp. 064504-1-064504-6. [10.1063/1.2179136]

Convergent beam electron diffraction investigation of strain induced by Ti self-aligned silicides in shallow trench Si isolation structures

FRABBONI, Stefano;
2006

Abstract

The deformation induced onto silicon by the formation of Ti self-aligned silicides (salicides) in shallow trench isolation structures has been investigated by the convergent beam electron diffraction technique (CBED) in the transmission electron microscope (TEM). The splitting of the high order Laue zone (HOLZ) lines in the CBED patterns taken in TEM cross sections close to the salicide/silicon interface has been explained assuming that the salicide grains induce a local bending of the lattice planes of the underlying matrix. This bending, which affects in opposite sense the silicon areas below adjacent grains, decreases with the distance from the interface, eventually vanishing at a depth of 300-400 nm. The proposed strain field has been implemented into a fully dynamical simulation of the CBED patterns and has proved to be able to reproduce both the asymmetry of the HOLZ line splitting and the associated subsidiary fringes. This model is confirmed by the shift of a Bragg contour observed in large angle CBED patterns, taken in a cross section cut along a perpendicular direction. The whole experimental results cannot be explained by just a strain relaxation of the TEM cross section, induced by the salicide film onto the underlying silicon.
2006
99
6
064504-1
064504-6
Convergent beam electron diffraction investigation of strain induced by Ti self-aligned silicides in shallow trench Si isolation structures / Armigliato, A; Spessot, A; Balboni, R; Benedetti, A; Carnevale, G; Frabboni, Stefano; Mastracchio, G; Pavia, G.. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - STAMPA. - 99:6(2006), pp. 064504-1-064504-6. [10.1063/1.2179136]
Armigliato, A; Spessot, A; Balboni, R; Benedetti, A; Carnevale, G; Frabboni, Stefano; Mastracchio, G; Pavia, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/2832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact