: Aim: Clostridia are relevant commensals of the human gut due to their major presence and correlations to the host. In this study, we investigated intestinal Clostridia of 51 healthy subjects and reconstructed their taxonomy and phylogeny. The relatively small number of intestinal Clostridia allowed a systematic whole genome approach based on average amino acid identity (AAI) and core genome with the aim of revising the current classification into genera and determining evolutionary relationships. Methods: 51 healthy subjects' metagenomes were retrieved from public databases. After the dataset's validation through comparison with Human Microbiome Project (HMP) samples, the metagenomes were profiled using MetaPhlAn3 to identify the population ascribed to the class Clostridia. Intestinal Clostridia genomes were retrieved and subjected to AAI analysis and core genome identification. Phylogeny investigation was conducted with RAxML and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithms, and SplitsTree for split decomposition. Results: 225 out of 406 bacterial taxonomic units were ascribed to Bacillota [Firmicutes], among which 124 were assigned to the class Clostridia. 77 out of the 124 taxonomic units were referred to a species, altogether covering 87.7% of Clostridia abundance. According to the lowest AAI genus boundary set at 55%, 15 putative genera encompassing more than one species (G1 to G15) were identified, while 19 species did not cluster with any other one and each appeared to belong to a diverse genus. Phylogenetic investigations highlighted that most of the species clustered into three main evolutive clades. Conclusion: This study shed light on the species of Clostridia colonizing the gut of healthy adults and pinpointed several gaps in knowledge regarding the taxonomy and the phylogeny of Clostridia.

Aim: Clostridia are relevant commensals of the human gut due to their major presence and correlations to the host. In this study, we investigated intestinal Clostridia of 51 healthy subjects and reconstructed their taxonomy and phylogeny. The relatively small number of intestinal Clostridia allowed a systematic whole genome approach based on average amino acid identity (AAI) and core genome with the aim of revising the current classification into genera and determining evolutionary relationships. Methods: 51 healthy subjects’ metagenomes were retrieved from public databases. After the dataset’s validation through comparison with Human Microbiome Project (HMP) samples, the metagenomes were profiled using MetaPhlAn3 to identify the population ascribed to the class Clostridia. Intestinal Clostridia genomes were retrieved and subjected to AAI analysis and core genome identification. Phylogeny investigation was conducted with RAxML and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithms, and SplitsTree for split decomposition. Results: 225 out of 406 bacterial taxonomic units were ascribed to Bacillota [Firmicutes], among which 124 were assigned to the class Clostridia. 77 out of the 124 taxonomic units were referred to a species, altogether covering 87.7% of Clostridia abundance. According to the lowest AAI genus boundary set at 55%, 15 putative genera encompassing more than one species (G1 to G15) were identified, while 19 species did not cluster with any other one and each appeared to belong to a diverse genus. Phylogenetic investigations highlighted that most of the species clustered into three main evolutive clades. Conclusion: This study shed light on the species of Clostridia colonizing the gut of healthy adults and pinpointed several gaps in knowledge regarding the taxonomy and the phylogeny of Clostridia.

Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis / Candeliere, Francesco; Musmeci, Eliana; Amaretti, Alberto; Sola, Laura; Raimondi, Stefano; Rossi, Maddalena. - In: MICROBIOME RESEARCH REPORTS. - ISSN 2771-5965. - 2:3(2023), pp. 13-17. [10.20517/mrr.2022.19]

Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis

Candeliere Francesco;Musmeci Eliana;Amaretti Alberto;Sola Laura;Raimondi Stefano;Rossi Maddalena
2023

Abstract

Aim: Clostridia are relevant commensals of the human gut due to their major presence and correlations to the host. In this study, we investigated intestinal Clostridia of 51 healthy subjects and reconstructed their taxonomy and phylogeny. The relatively small number of intestinal Clostridia allowed a systematic whole genome approach based on average amino acid identity (AAI) and core genome with the aim of revising the current classification into genera and determining evolutionary relationships. Methods: 51 healthy subjects’ metagenomes were retrieved from public databases. After the dataset’s validation through comparison with Human Microbiome Project (HMP) samples, the metagenomes were profiled using MetaPhlAn3 to identify the population ascribed to the class Clostridia. Intestinal Clostridia genomes were retrieved and subjected to AAI analysis and core genome identification. Phylogeny investigation was conducted with RAxML and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithms, and SplitsTree for split decomposition. Results: 225 out of 406 bacterial taxonomic units were ascribed to Bacillota [Firmicutes], among which 124 were assigned to the class Clostridia. 77 out of the 124 taxonomic units were referred to a species, altogether covering 87.7% of Clostridia abundance. According to the lowest AAI genus boundary set at 55%, 15 putative genera encompassing more than one species (G1 to G15) were identified, while 19 species did not cluster with any other one and each appeared to belong to a diverse genus. Phylogenetic investigations highlighted that most of the species clustered into three main evolutive clades. Conclusion: This study shed light on the species of Clostridia colonizing the gut of healthy adults and pinpointed several gaps in knowledge regarding the taxonomy and the phylogeny of Clostridia.
2023
2
3
13
17
Profiling of the intestinal community of Clostridia: taxonomy and evolutionary analysis / Candeliere, Francesco; Musmeci, Eliana; Amaretti, Alberto; Sola, Laura; Raimondi, Stefano; Rossi, Maddalena. - In: MICROBIOME RESEARCH REPORTS. - ISSN 2771-5965. - 2:3(2023), pp. 13-17. [10.20517/mrr.2022.19]
Candeliere, Francesco; Musmeci, Eliana; Amaretti, Alberto; Sola, Laura; Raimondi, Stefano; Rossi, Maddalena
File in questo prodotto:
File Dimensione Formato  
2023 clostridi.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 19.84 MB
Formato Adobe PDF
19.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1332830
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact