Aims: The differentiation of left ventricular (LV) hypertrophic phenotypes is challenging in patients with normal ejection fraction (EF). The myocardial contraction fraction (MCF) is a simple dimensionless index useful for specifically identifying cardiac amyloidosis (CA) and hypertrophic cardiomyopathy (HCM) when calculated by cardiac magnetic resonance. The purpose of this study was to evaluate the value of MCF measured by three-dimensional automated, machine-learning-based LV chamber metrics (dynamic heart model [DHM]) for the discrimination of different forms of hypertrophic phenotypes. Methods and Results: We analyzed the DHM LV metrics of patients with CA (n = 10), hypertrophic cardiomyopathy (HCM, n = 36), isolated hypertension (IH, n = 87), and 54 healthy controls. MCF was calculated by dividing LV stroke volume by LV myocardial volume. Compared with controls (median 61.95%, interquartile range 55.43–67.79%), mean values for MCF were significantly reduced in HCM—48.55% (43.46–54.86% p < 0.001)—and CA—40.92% (36.68–46.84% p < 0.002)—but not in IH—59.35% (53.22–64.93% p < 0.7). MCF showed a weak correlation with EF in the overall cohort (R2 = 0.136) and the four study subgroups (healthy adults, R2 = 0.039 IH, R2 = 0.089; HCM, R2 = 0.225; CA, R2 = 0.102). ROC analyses showed that MCF could differentiate between healthy adults and HCM (sensitivity 75.9%, specificity 77.8%, AUC 0.814) and between healthy adults and CA (sensitivity 87.0%, specificity 100%, AUC 0.959). The best cut-off values were 55.3% and 52.8%. Conclusions: The easily derived quantification of MCF by DHM can refine our echocardiographic discrimination capacity in patients with hypertrophic phenotype and normal EF. It should be added to the diagnostic workup of these patients.

Quantification of Myocardial Contraction Fraction with Three-Dimensional Automated, Machine-Learning-Based Left-Heart-Chamber Metrics: Diagnostic Utility in Hypertrophic Phenotypes and Normal Ejection Fraction / Barbieri, A.; Imberti, J. F.; Bartolomei, M.; Bonini, N.; Laus, V.; Torlai Triglia, L.; Chiusolo, S.; Stuani, M.; Mari, C.; Muto, F.; Righelli, I.; Gerra, L.; Malaguti, M.; Mei, D. A.; Vitolo, M.; Boriani, G.. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 12:17(2023), pp. 5525-N/A. [10.3390/jcm12175525]

Quantification of Myocardial Contraction Fraction with Three-Dimensional Automated, Machine-Learning-Based Left-Heart-Chamber Metrics: Diagnostic Utility in Hypertrophic Phenotypes and Normal Ejection Fraction

Imberti J. F.;Bartolomei M.;Laus V.;Torlai Triglia L.;Chiusolo S.;Stuani M.;Mari C.;Muto F.;Righelli I.;Gerra L.;Mei D. A.;Vitolo M.;Boriani G.
2023

Abstract

Aims: The differentiation of left ventricular (LV) hypertrophic phenotypes is challenging in patients with normal ejection fraction (EF). The myocardial contraction fraction (MCF) is a simple dimensionless index useful for specifically identifying cardiac amyloidosis (CA) and hypertrophic cardiomyopathy (HCM) when calculated by cardiac magnetic resonance. The purpose of this study was to evaluate the value of MCF measured by three-dimensional automated, machine-learning-based LV chamber metrics (dynamic heart model [DHM]) for the discrimination of different forms of hypertrophic phenotypes. Methods and Results: We analyzed the DHM LV metrics of patients with CA (n = 10), hypertrophic cardiomyopathy (HCM, n = 36), isolated hypertension (IH, n = 87), and 54 healthy controls. MCF was calculated by dividing LV stroke volume by LV myocardial volume. Compared with controls (median 61.95%, interquartile range 55.43–67.79%), mean values for MCF were significantly reduced in HCM—48.55% (43.46–54.86% p < 0.001)—and CA—40.92% (36.68–46.84% p < 0.002)—but not in IH—59.35% (53.22–64.93% p < 0.7). MCF showed a weak correlation with EF in the overall cohort (R2 = 0.136) and the four study subgroups (healthy adults, R2 = 0.039 IH, R2 = 0.089; HCM, R2 = 0.225; CA, R2 = 0.102). ROC analyses showed that MCF could differentiate between healthy adults and HCM (sensitivity 75.9%, specificity 77.8%, AUC 0.814) and between healthy adults and CA (sensitivity 87.0%, specificity 100%, AUC 0.959). The best cut-off values were 55.3% and 52.8%. Conclusions: The easily derived quantification of MCF by DHM can refine our echocardiographic discrimination capacity in patients with hypertrophic phenotype and normal EF. It should be added to the diagnostic workup of these patients.
2023
12
17
5525
N/A
Quantification of Myocardial Contraction Fraction with Three-Dimensional Automated, Machine-Learning-Based Left-Heart-Chamber Metrics: Diagnostic Utility in Hypertrophic Phenotypes and Normal Ejection Fraction / Barbieri, A.; Imberti, J. F.; Bartolomei, M.; Bonini, N.; Laus, V.; Torlai Triglia, L.; Chiusolo, S.; Stuani, M.; Mari, C.; Muto, F.; Righelli, I.; Gerra, L.; Malaguti, M.; Mei, D. A.; Vitolo, M.; Boriani, G.. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 12:17(2023), pp. 5525-N/A. [10.3390/jcm12175525]
Barbieri, A.; Imberti, J. F.; Bartolomei, M.; Bonini, N.; Laus, V.; Torlai Triglia, L.; Chiusolo, S.; Stuani, M.; Mari, C.; Muto, F.; Righelli, I.; Ge...espandi
File in questo prodotto:
File Dimensione Formato  
jcm-12-05525-v2.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1322375
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact