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Abstract: Aims: The differentiation of left ventricular (LV) hypertrophic phenotypes is challenging
in patients with normal ejection fraction (EF). The myocardial contraction fraction (MCF) is a simple
dimensionless index useful for specifically identifying cardiac amyloidosis (CA) and hypertrophic
cardiomyopathy (HCM) when calculated by cardiac magnetic resonance. The purpose of this study
was to evaluate the value of MCF measured by three-dimensional automated, machine-learning-
based LV chamber metrics (dynamic heart model [DHM]) for the discrimination of different forms
of hypertrophic phenotypes. Methods and Results: We analyzed the DHM LV metrics of patients
with CA (n = 10), hypertrophic cardiomyopathy (HCM, n = 36), isolated hypertension (IH, n = 87),
and 54 healthy controls. MCF was calculated by dividing LV stroke volume by LV myocardial
volume. Compared with controls (median 61.95%, interquartile range 55.43–67.79%), mean values
for MCF were significantly reduced in HCM—48.55% (43.46–54.86% p < 0.001)—and CA—40.92%
(36.68–46.84% p < 0.002)—but not in IH—59.35% (53.22–64.93% p < 0.7). MCF showed a weak
correlation with EF in the overall cohort (R2 = 0.136) and the four study subgroups (healthy adults,
R2 = 0.039 IH, R2 = 0.089; HCM, R2 = 0.225; CA, R2 = 0.102). ROC analyses showed that MCF could
differentiate between healthy adults and HCM (sensitivity 75.9%, specificity 77.8%, AUC 0.814) and
between healthy adults and CA (sensitivity 87.0%, specificity 100%, AUC 0.959). The best cut-off
values were 55.3% and 52.8%. Conclusions: The easily derived quantification of MCF by DHM can
refine our echocardiographic discrimination capacity in patients with hypertrophic phenotype and
normal EF. It should be added to the diagnostic workup of these patients.

Keywords: 3D echocardiography; artificial intelligence; cardiac chamber quantification; machine learning

1. Introduction

When conventional endocardial measurements of ejection fraction (EF) are used to
assess left ventricular (LV) function, the increases in wall thickness or decreases in diam-
eters might mask the existence of a significant impairment in systolic performance [1,2].
Experimental [3,4] and clinical studies using strain analysis [5] have demonstrated that
less fiber shortening is required to achieve a comparable EF in a thick-walled compared to
a thin-walled LV. Similarly, despite comparable shortening and wall thickness, a smaller
LV will have a greater EF than a larger ventricle [1]. Therefore, in clinical practice, it is
essential to have access to metrics that, unlike the assessment of EF, can identify meaningful
myocardial disease in individuals with a hypertrophic phenotype [6].
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One of the most intriguing parameters in this context is the ratio of stroke volume
to myocardial volume, which determines the myocardial contraction fraction (MCF). It
is a measure of how much the myocardium contracts during systole (as measured by
stroke volume [SV]) in comparison to its ability to contract (as measured by myocardial
volume) [7,8].

There is ample evidence that the MCF can discriminate between pathological and
normal hypertrophy [1,9,10] and identify individuals with heart failure with preserved EF
due to amyloidosis from those with increased wall thickness due to other conditions [11,12].
Prognostically, the MCF outperforms the EF when measured by cardiac magnetic resonance
in patients with cardiac amyloidosis (CA) or hypertrophic cardiomyopathy (HCM) [9,13].
However, one notable disadvantage of MCF measurement is that it is not a standard
component of transthoracic echocardiography since the LV mass quantification using the
standard linear diameter measures is frequently inaccurate in hearts with regional hetero-
geneity [14]. Furthermore, the systematic underestimation of the LV volumes assessment
by 2-dimensional echocardiography (2DE) compared to cardiac magnetic resonance further
complicates the routine use of MCF [15].

Yet, many of these issues are now solved by automated three-dimensional echocardio-
graphy (3DE) [16]. Recently, a further improvement in 3DE technology provided a new
algorithm for LV analysis, which is based on the principles of machine learning dynamic
heart model ([DHM], Philips Healthcare, Andover, MA, USA) using a training set of over a
thousand studies [17], allowing for a feasible, fast, accurate, and reproducible automated
quantification of LV mass [18] and volumes [19] in one single output. Therefore, applying
machine learning techniques to 3DE has great potential to enhance physician familiarity
with the MCF metric in clinical practice. However, despite the high accuracy, a DHM
measure of MCF has not been described yet.

To address this, we describe the measure of MCF by DHM and compare it in normal
subjects in patients with isolated hypertension, CA, and HCM.

2. Materials and Methods
2.1. Study Subjects

The study population comprised patients aged ≥18 who underwent standard transtho-
racic Doppler echocardiography for any indication from 14 September 2020 to 9 November
2021 at Modena University Hospital’s echocardiography laboratory. Criteria for enrollment
included age ≥18 years, complete resting 2D and 3D echocardiographic assessment, and
EF ≥ 50%. We excluded patients with unsatisfactory images—the margins were not seen
well and thus deemed untraceable, patients on dialysis or end-stage liver failure, since
large fluid shifts in these patients may cause significant extemporaneous differences in LA
and LV measurements, patients with moderate or severe valvular heart disease, pregnant
women and those who are in the six months following childbirth, and patients with morbid
obesity or leanness (BMI ≥ 30 kg/m2, BMI < 18.5 kg/m2, respectively).

Then, we identify four groups of subjects (Figure 1): (1) healthy adults (absence of
diabetes, hypertension, previous or current heart disease, cardiac implantable electronic
devices, stroke, COPD, venous thromboembolism, cancer, previous or current systemic
diseases that may have an impact on the cardiovascular system, drug therapy or other treat-
ments with cardiovascular effects, normal cardiovascular physical examination, normal
ECG at rest) without clinical indication on DHM, (2) isolated hypertension (same require-
ments as for normal group, but with only a history of systemic arterial hypertension),
(3) patients with HCM, diagnosed according to current guidelines [20,21] (4) patients with
CA, diagnosed according to the position statement of the European Society of Cardiology
Working Group on Myocardial and Pericardial Diseases [22].
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obstructive pulmonary disease, venous thromboembolism, cancer, previous or current systemic 
diseases that may have an impact on the cardiovascular system, drug therapy, or other treatments 
with cardiovascular effects, normal cardiovascular physical examination, normal ECG at rest) 
without clinical indication of DHM. 2DE: bidimensional echocardiography; DHM: Dynamic Heart 
Model; LVEF: left ventricular ejection fraction; VHD: valvular heart disease; BMI: body mass 
index; IHT: isolated arterial hypertension; HCM: hypertrophic cardiomyopathy; CA: cardiac 
amyloidosis. 

Age, sex, height, weight, body surface area (BSA), cardiac rhythm, clinical 
indications, and history of cardiovascular diseases were recorded at the time of the 
echocardiography. The study protocol followed the ethical guidelines of the 1975 
Declaration of Helsinki and was approved by the local ethic committee (Protocol Code: 
234-2021, date of approval: 11 May 2021). 

2.2.Echocardiographic Data 
A complete 2D and 3D transthoracic echocardiographic examination was performed, 

according to current guidelines [23,24], using a commercial ultrasound system (EPIQ CVx, 
Philips Healthcare) equipped with an X5-1 transducer. We used a single-beat acquisition 
mode and multiple cardiac cycles (3–5 beats) in patients with atrial fibrillation. Analysis 
of DHM methodology was described in detail in our recent publication [25]. Briefly, after 
setting gain, time-gain compensation, and depth on 2D images, a single-beat acquisition 
mode from the apical four-chamber view was used to acquire 3D wide-angle datasets. By 
changing sector width and image depth, the 3D frame rate was optimized. All the 
acquisitions were performed by operators fully trained in echocardiography with long-
standing experience with the 3D technique and trained on echocardiographic datasets 
focusing on what constitutes adequate automated analysis. The novel vendor software 
simultaneously detects LV and left atrial (LA) endocardial surfaces using an adaptive 

Figure 1. Flowchart depicting the patient selection process. * Absence of diabetes, hypertension,
previous or current heart disease, cardiac implantable electronic devices, stroke, chronic obstructive
pulmonary disease, venous thromboembolism, cancer, previous or current systemic diseases that
may have an impact on the cardiovascular system, drug therapy, or other treatments with cardio-
vascular effects, normal cardiovascular physical examination, normal ECG at rest) without clinical
indication of DHM. 2DE: bidimensional echocardiography; DHM: Dynamic Heart Model; LVEF:
left ventricular ejection fraction; VHD: valvular heart disease; BMI: body mass index; IHT: isolated
arterial hypertension; HCM: hypertrophic cardiomyopathy; CA: cardiac amyloidosis.

Age, sex, height, weight, body surface area (BSA), cardiac rhythm, clinical indications,
and history of cardiovascular diseases were recorded at the time of the echocardiography.
The study protocol followed the ethical guidelines of the 1975 Declaration of Helsinki and
was approved by the local ethic committee (Protocol Code: 234-2021, date of approval: 11
May 2021).

2.2. Echocardiographic Data

A complete 2D and 3D transthoracic echocardiographic examination was performed,
according to current guidelines [23,24], using a commercial ultrasound system (EPIQ CVx,
Philips Healthcare) equipped with an X5-1 transducer. We used a single-beat acquisition
mode and multiple cardiac cycles (3–5 beats) in patients with atrial fibrillation. Analysis
of DHM methodology was described in detail in our recent publication [25]. Briefly, after
setting gain, time-gain compensation, and depth on 2D images, a single-beat acquisition
mode from the apical four-chamber view was used to acquire 3D wide-angle datasets.
By changing sector width and image depth, the 3D frame rate was optimized. All the
acquisitions were performed by operators fully trained in echocardiography with long-
standing experience with the 3D technique and trained on echocardiographic datasets
focusing on what constitutes adequate automated analysis. The novel vendor software
simultaneously detects LV and left atrial (LA) endocardial surfaces using an adaptive
analytics algorithm, which uses knowledge-based identification to orient and locate cardiac
chambers and patient-specific adaptation of endocardial borders from which LV and LA
volumes are derived directly without geometrical assumptions.
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Using the automated DHM program, which automatically detects LV endo- and
epicardial borders at the end-diastole, 3D-LV mass was analyzed, enabling direct LV mass
thickness. Although it is possible to correct the LV and LA endocardial–epicardial borders
at the end-diastole and and-systole, manual border adjustments were performed when
deemed indicated by the operator. We considered the following DHM measures: LV end-
diastolic volume indexed to BSA (EDVi), LV end-systolic volume indexed to BSA (ESVi),
EF, SV, LA maximum volume indexed to BSA (LAVi max), LA minimum volume indexed
to BSA (LAVi min), LA ejection fraction (LAEF), automatically calculated as LA maximum
volume-LA minimum volume/LA maximum volume), LV mass, LV mass indexed to BSA,
LV mass: LV end-diastolic volume ratio (LVM/LVEDV). We considered the MCF as an
additional measure of the LV function as LV stroke volume/LV myocardial volume ×
100. The myocardial volume was assessed by directly measuring the LV mass between
the epicardium and endocardium by DHM and calculated by dividing the LV mass by
1.05 (the density of myocardial tissue). When correctly performed, the calculation of LV
myocardial volume is the same whether performed during systole or diastole because
myocardial tissue, being not compressible, does not change during contraction [26]. All 3D
echocardiography images were analyzed online using the larger default boundary detection
sliders (end-diastolic position = 60/60; end-systolic position = 30/30). This setting defines
diastolic and systolic contour positions within the myocardial wall ranging from 0 to
100, 0 being the most inner endocardial contour toward the LV cavity and 100 being the
most outer endocardial contour towards the myocardial wall. To our knowledge, there
are no specific recommendations about this feature, and the decision is left to the single
image laboratory. We deliberately decided to apply these fixed threshold borders settings
because they were the ones used in previous validation studies, and they are closer to the
settings of CMR [27]. All measurements were entered into an electronic database during the
echocardiographic examination. No modification from the original database was applied,
and no 3D measurement was made offline. Hence, the study consisted of a retrospective
analysis of data prospectively included in the electronic echocardiographic database.

3. Statistical Analysis

Data are shown as counts and percentages or median and interquartile range (IQR).
Categorical variables were compared with the Chi-square test (or Fisher’s exact test if
appropriate). For continuous variables, a comparison was made with the Mann–Whitney U
test. Linear regression analysis was used to compare MCF and LVEF. The quality standards
for correlations were defined as: very good: 0.8 < R2 < 1.0; good: 0.6 < R2 < 0.8; moderate:
0.4 < R2 < 0.6; or poor: R2 < 0.4. The discriminatory performance of the MCF for each study
subgroup was explored using receiver-operating characteristic (ROC) curves and the area
under the curve (AUC) analysis; the Youden index was used to determine the best cut-off
values. A p-value < 0.05 was considered to be statistically significant in all the analyses.
Analyses were performed using SPSS® version 26 (IBM Corp, Armonk, NY, USA).

4. Results

The original dataset consisted of 1349 consecutive patients. Among them, we identified
54 healthy adults, 87 patients affected by isolated hypertension, 36 by HCM, and 10 by CA.
Median age was 49 (37–69) years, 61 (52–75) years, 63 (56–69) years, and 81 (79–82) years,
respectively. Females accounted for 51.9% of healthy adults, 55.2% of isolated hypertension,
32.4% of HCM, and 10% of CA. Of note, 10.8% of HCM patients and 50% of CA patients
had a history of atrial fibrillation. Most healthy adults (90.7%) and isolated hypertension
(87.4%) showed an MCF ≥ 50%, while this finding was observed only in 41.7% of HCM
patients and 10% of CA patients. Patients with MCF ≥ 50% were younger as compared
with patients with MCF < 50% (57 (46–70) vs. 72 (59–81) years, p < 0.001), they were
more frequently female (53.9% vs. 26.1%; p < 0.001) and less frequently had a history of
coronary artery disease (0.7% vs. 8.7%, p = 0.014). A detailed description of the patient’s
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demographic and clinical characteristics according to their baseline MCF value is shown in
Table 1.

Table 1. Baseline characteristics of the overall cohort according to myocardial contraction fraction
values.

MCF ≥ 50%
(n = 141)

MCF < 50%
(n = 46)

Total
(n = 187) p-Value

Age, years 57.00
(46.0–70.0)

71.50
(59.0–81.0)

61.00
(48.3–72.8) <0.001

Female 76 (53.9) 12 (26.1) 88 (47.1) <0.001

Heart rate, bpm 69.00
(62.0–77.0)

67.50
(60.8–81.5)

69.00
(62.0–78.0) 0.791

Hypertension 78 (55.3) 21 (45.7) 99 (52.9) 0.308

Diabetes 0.0 (0.0) 2 (4.3) 2 (1.1) 0.060

CAD 1 (0.7) 4 (8.7) 5 (2.7) 0.014

ACS 1 (0.7) 2 (4.3) 3 (1.6) 0.150

Stroke/TIA 1 (0.7) 1 (2.2) 2 (1.1) 0.432

Heart failure 0 (0.0) 0 (0.0) 0 (0.0) NA

Atrial fibrillation 1 (0.7) 8 (17.4) 9 (4.8) <0.001

CIED 2 (1.4) 5 (10.9) 7 (3.7) 0.004

Pulmonary
embolism 0 (0.0) 1 (2.2) 1 (0.5) 0.246

Healthy adults 49 (90.7) 5 (9.3) 54 (100)

<0.001

Isolated
hypertension 76 (87.4) 11 (12.6) 87 (100)

Hypertrophic
cardiomyopathy 15/36 (41.7) 21/36 (58.3) 36736 (100)

Cardiac amyloidosis 1 (10.0) 9 (90.0) 10 (100)
Values are median (IQR) and n (%). ACS, acute coronary syndrome; Bpm, beats per minute; CAD, coronary artery
disease; CIED, cardiac implantable electronic devices; NA, not applicable; TIA, transient ischemic attack.

Echocardiographic parameters are shown in Table 2. Interestingly, LVEDVi and LVESVi
were not different between patients with MCF ≥ 50% and <50% (72.3 (62.9–81.8) vs. 68.2
(59.7–82.1) mL/m2; p = 0.469 and 28.6 (23.0–35.8) vs. 32.0 (24.6–38.7) mL/m2; p = 0.154, re-
spectively). On the other hand, patients with MCF ≥ 50% showed a significantly lower LAVi
max (34.4 (28.4–42.7) vs. 54.0 (41.3–65.3) mL/m2; p < 0.001) and LAVi min (12.7 (9.4–17.1) vs.
30.3 (17.7–40.2) mL/m2; p < 0.001) and a higher LAEF (62.0% (56.0–68.0) vs. 45% (29.0–59.0);
p < 0.001). The median MCF in the overall cohort was 57.34 (50.1–64.9). Healthy adults
showed higher MCF values than HCM (p < 0.001) and CA patients (p = 0.002), while they
did not differ as compared with isolated hypertension (p = 0.756) (Figure 2).

MCF showed a weak level of correlation with LVEF in the overall cohort (R2 = 0.136)
and the four study subgroups as well (healthy adults, R2 = 0.039; isolated hypertension,
R2= 0.089; HCM, R2 = 0.225; CA, R2 = 0.102). ROC analyses showed that MCF had a high
capability to differentiate between healthy adults and HCM patients (sensitivity 75.9%,
specificity 77.8%, AUC 0.814) and between healthy adults and CA patients (sensitivity
87.0%, specificity 100%, AUC 0.959), but not between healthy adults and isolated hyperten-
sion (sensitivity 50.0%, specificity 65.5%, AUC 0.575). The best cut-off values were 55.37,
52.86, and 62.24, respectively (Figure 3).
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Table 2. Baseline characteristics of the overall cohort according to myocardial contraction fraction
values.

MCF ≥ 50%
(n = 141)

MCF < 50%
(n = 46)

Total
(n = 187) p-Value

EDD, mm 48.00
(44.00–51.00)

44.00
(40.75–49.25)

47.00
(44.00–51.00) 0.006

LV Mass-i (2D), g 73.96
(62.60–90.81)

114.49
(75.18–141.48)

76.65
(63.17–99.92) <0.001

LV Mass-i, g/m2 73.81
(63.63–82.93)

93.25
(84.11–109.14)

77.37
(67.05–89.47) <0.001

LV EDVi (2D), mL/m2 53.99
(53.18–58.62)

54.79
(50.27–60.47)

53.99
(53.31–58.05) 0.967

LV EDVi, mL/m2 72.27
(62.88–81.78)

68.20
(59.72–82.12)

71.82
(62.32–81.66) 0.469

LV ESVi, mL/m2 28.60
(22.96–35.81)

31.97
(24.60–38.70)

28.71
(23.49–36.04) 0.154

SVi, g/m2 42.71
(37.46–48.87)

39.69
(33.94–44.48)

42.06
(36.66–48.32) 0.006

LVEF, % 60.00
(56.00–63.50)

56.00
(51.75–60.25)

58.50
(55.00–63.00) <0.001

MCF 60.43
(55.28–66.44)

44.99
(40.11–47.94)

57.34
(50.06–64.88) <0.001

LAVi Max, mL/m2 34.37
(28.35–42.66)

54.01
(41.25–65.25)

37.13
(29.52–48.59) <0.001

LAVi Min, mL/m2 12.72
(9.43–17.06)

30.25
(17.74–40.24)

14.33
(10.10–23.34) <0.001

LAEF, % 62.00
(56.00–68.00)

45.00
(29.00–59.00)

60.00
(51.00–66.00) <0.001

Values are median (IQR) and n (%). Measurements, except diameters, were taken using the 3D-DHM if not
specified otherwise. EDD, end-diastolic diameter; EDVi, end-diastolic volume index; ESVi, end-systolic volume
index; LAEF, left atrial ejection fraction; LAVi Max, left atrial maximum volume index; LAVi Min, left atrial
minimum volume index; LV, left ventricular; LVEF, left ventricular ejection fraction; MCF, myocardial contraction
fraction; SVi, stroke volume index.
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(Panel A) Receiver-operating characteristics (ROC) curve showing the performance of myocardial
contraction fraction for detecting hypertrophic cardiomyopathy. (Panel B) ROC curve showing the
performance of myocardial contraction fraction for detecting Cardiac amyloidosis. (Panel C) ROC
curve showing the performance of myocardial contraction fraction for detecting isolated hypertension.
AUC, area under the curve; CA, cardiac amyloidosis; HCM, hypertrophic cardiomyopathy; IHT,
isolated hypertension.

5. Discussion

The MCF is a dimensionless index with a clear, simple definition supported by proof
of a predictive value when calculated by cardiac magnetic resonance [9,12,28–30]. The
primary finding of this study was that in patients with normal EF, the MCF by DHM
clearly distinguishes the groups of normal subjects and patients with isolated hypertension
from the groups of patients with HCM and CA. Despite similar degrees of hypertrophy
between isolated hypertensive and HCM groups, we found that the MCF was significantly
different. The MCF decreased in patients with HCM and even more in patients with CA,
reflecting a relatively greater decrease in SV than myocardial volume (Figure 4). Of note,
in our cohort, patients with abnormal MCF (<50%) demonstrated a higher hemodynamic
burden (increased LAVi max, LAVi min, decreased LAEF) compared with patients with
normal MCF, which strengthens our evidence even more. Thus, the MCF by DHM appears
as an additional appealing echocardiographic parameter in patients with hypertrophic
phenotypes.

The differentiation of pathologic hypertrophy is challenging in patients with mild
forms of hypertrophy and normal EF. We showed that the MCF was not significantly
different among normal subjects and isolated hypertensive patients. The lack of statistically
significant difference may be due to the small sample size in combination with nonadvanced
hypertensive heart disease and the lack of the superimposition of clinical heart failure in
the group with isolated hypertension. A previous study showed that the MCF by manual
3DE could differentiate subjects with hypertensive hypertrophy and heart failure from
endurance athletes with hypertrophy [7].

Echocardiography is a first-line screening tool for patients with LV hypertrophy and
normal EF. In both HCM and CA, both the SV and LVEDV are reduced. Therefore, the calcu-
lated ratio of SV to LVEDV (i.e., the EF) typically falls into the normal or near-normal range
even though myocardial shortening and systolic function are significantly hampered [31].
As a result, cardiomyocyte function abnormalities should be detected using measurements
of myocardial shortening (i.e., MCF and strain) [9–12]. Pagourelias et al. showed that
the deformation parameters differentiate better CA from other hypertrophic substrates
than MCF calculated by 2DE [11]. However, it is worth noting that the MCF requires
precise SV and myocardial volume measurement. Therefore, its use in clinical practice
should be restricted to 3DE since estimates of these parameters obtained by 2DE techniques
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are neither sufficiently accurate nor reproducible to be comparable to 3DE results [32,33].
Conversely, DHM provides a multiparametric output quickly at the same time (i.e., volume
and function), in conjunction with the proven accuracy and reproducibility of LV mass and
volumes [18,19], allowing for the broadly reliable MCF application in clinical practice.
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Figure 4. Example of 3D measurements (LV volumes and LV mass) obtained from automated DHM
in a patient with cardiac amyloidosis and normal EF (54%). This advanced echocardiography allows
for accurate, automated measurements of chamber volumes and function providing larger, more
accurate LV volumes with good agreement with cardiac magnetic resonance when analyzed using the
default settings of the boundary detection sliders (end-diastolic default position = 60/60; end-systolic
default position = 30/30). LV myocardial mass (233 g) divided by the mean density of myocardium
of 1.05 g/mL presents LV myocardial volume (221 mL). The ratio of SV (88 mL) to myocardial
volume calculated the Myocardial Contraction Fraction (39%), significantly lower than the EF. LV: left
ventricular; DHM: Dynamic Heart Model, Philips Healthcare, Andover, MA, USA; SV: stroke volume;
EF: ejection fraction. DHM automatically measures chamber volumes throughout the cardiac cycle,
resulting in LV time curve (yellow).

6. Limitations

Our study was retrospective in design, and the sub-analysis of the patients with HCM
and CA was restricted to a small group. However, all our groups were strictly defined, and
the number of patients included is similar compared with other studies investigating LV
hypertrophy differential diagnosis.

The healthy sedentary subjects and those involved in competitive sports were not
differentiated. Indeed, the MCF is increased in subjects with physiologic hypertrophy,
reflecting a relatively greater increase in SV than myocardial volume [7].

We do not account for LV global longitudinal strain because it was not feasible in a
non-negligible percentage of the sample analyzed. However, conceptually, the MCF is
comparable to myocardial strain because it is a generalized measure of myocardial shorten-
ing [5]. Yet, the MCF combines information on shortening from all domains (longitudinal,
radial, and circumferential) into a single value [8], whereas strain quantifies shortening in
a particular section of the heart [31]. Nevertheless, more data are required to assess their
reciprocal diagnostic benefit.
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A more appropriately powered study examining associations would allow for a
more granular disease-specific sub-analysis highlighting eventual variations of the MCF
concerning HCM phenotypes, different stages of CA, and hypertensive heart disease. This
issue may contribute to future studies on disease stages and risk stratification. Indeed, the
probability of MCF becoming abnormal gradually increases across the spectrum of CA
deposition [2].

The MCF by DHM was not performed on top of conventional 2DE evaluation for
comparative analysis [34–37]. However, since the DHM has been available, our echo lab
has stopped performing 2DE volumetric analysis regularly. Moreover, our group recently
showed that the LV mass assessment by DHM showed systematic differences and wide
limits of agreements compared with the standard 2DE quantification [38].

We were unable to gather more detailed information on the history and severity of
hypertension since this was a retrospective analysis of a group that had transthoracic
echocardiography.

Finally, although easy to calculate, MCF by DHM is still a derived parameter. Therefore,
postprocessing algorithms should hopefully be developed quickly to estimate MCF within
an even shorter time delay regarding transferability to the clinical practice.

7. Conclusions

The present data suggested that the quantification of the MCF by DHM can refine
our echocardiographic discrimination capacity in patients with hypertrophic phenotype
and normal EF. The following steps will require assessing its utility in other groups and
different clinical scenarios for more general application in clinical practice.
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