In this paper, a comparison of signal analysis techniques for the diagnostics of rolling element bearings is carried out. Specifically, the comparison is performed in terms of fault detection, diagnosis and prognosis techniques with regards to the first rolling element bearing dataset released by NASA IMS Center in 2014. As for fault detection, it is obtained that RMS value, Kurtosis and Detectivity, as statistical parameters, are able to properly detect the arising of the fault on the defective bearings. Then, several signal processing techniques, such as deterministic/random signal separation, time-frequency and cyclostationary analyses are applied to perform fault diagnosis. Among these techniques, it is found that the combination of Cepstrum Pre-Whitening and Squared Envelope Spectrum, and Improved Envelope Spectrum, allow the faults to be correctly identified on specific bearing components. Finally, the Correlation, Monotonicity and Robustness of the previous statistical parameters are computed to identify the most accurate tools for bearing fault prognosis.
A Comparison of Signal Analysis Techniques for the Diagnostics of the IMS Rolling Element Bearing Dataset / Sacerdoti, Diletta; Strozzi, Matteo; Secchi, Cristian. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 13:10(2023), pp. 1-35. [10.3390/app13105977]
A Comparison of Signal Analysis Techniques for the Diagnostics of the IMS Rolling Element Bearing Dataset
Diletta Sacerdoti;Matteo Strozzi
;Cristian Secchi
2023
Abstract
In this paper, a comparison of signal analysis techniques for the diagnostics of rolling element bearings is carried out. Specifically, the comparison is performed in terms of fault detection, diagnosis and prognosis techniques with regards to the first rolling element bearing dataset released by NASA IMS Center in 2014. As for fault detection, it is obtained that RMS value, Kurtosis and Detectivity, as statistical parameters, are able to properly detect the arising of the fault on the defective bearings. Then, several signal processing techniques, such as deterministic/random signal separation, time-frequency and cyclostationary analyses are applied to perform fault diagnosis. Among these techniques, it is found that the combination of Cepstrum Pre-Whitening and Squared Envelope Spectrum, and Improved Envelope Spectrum, allow the faults to be correctly identified on specific bearing components. Finally, the Correlation, Monotonicity and Robustness of the previous statistical parameters are computed to identify the most accurate tools for bearing fault prognosis.File | Dimensione | Formato | |
---|---|---|---|
Paper 1.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris