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Abstract: In this paper, a comparison of signal analysis techniques for the diagnostics of rolling
element bearings is carried out. Specifically, the comparison is performed in terms of fault detection,
diagnosis and prognosis techniques with regards to the first rolling element bearing dataset released
by NASA IMS Center in 2014. As for fault detection, it is obtained that RMS value, Kurtosis and
Detectivity, as statistical parameters, are able to properly detect the arising of the fault on the defective
bearings. Then, several signal processing techniques, such as deterministic/random signal separation,
time-frequency and cyclostationary analyses are applied to perform fault diagnosis. Among these
techniques, it is found that the combination of Cepstrum Pre-Whitening and Squared Envelope
Spectrum, and Improved Envelope Spectrum, allow the faults to be correctly identified on specific
bearing components. Finally, the Correlation, Monotonicity and Robustness of the previous statistical
parameters are computed to identify the most accurate tools for bearing fault prognosis.
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1. Introduction

Condition monitoring is today a crucial and unavoidable practice related to the use
of widespread mechanical components as rolling element bearings (REBs), which play a
fundamental role within industrial rotating machineries to support moving parts, transmit
motion and power and reduce friction among them. As such, they experience constant
stress and are seriously prone to suffering from wear, which ultimately results in faults. If
neglected, a damaged bearing is likely to worsen and affect adjacent components due to
physical contact, affecting the functioning of the whole system and turning into a catas-
trophic failure, imposing an immediate stop of the production or service with deleterious
economical consequences.

It is therefore necessary to prevent such a harmful situation, identifying in advance char-
acteristic signs of its incoming occurrence, without waiting for defects to become visible, i.e.,
already at an advanced stage, as has been the case in the past with the run-to-break approach,
or relying on periodic replacements carried out blindly, as in time-based maintenance.

Thanks to the use of more powerful sensors and technologies, in recent years predictive
maintenance has established itself as an effective discipline to real-time trace the healthy
state of mechanical parts and find out the best economical time to execute maintenance
intervention. Symptoms of different natures can be taken into consideration, from thermal
and pressure fields, noise, and IR emissions to current consumption and lubricant-based
analysis, but the most common and effective approach is that based on the study of bearing
vibrational signals.

Vibration-based condition monitoring is a dynamic research field that is performed
with tools susceptible to constant progress; nowadays, besides the mathematical signal-
based techniques, new data-driven approaches emerge as promising methods. The latter
are particularly appreciated for fault prognosis, which is the third and last phase involved
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in the process, aiming to predict the future evolution of the vibration signal beyond the
present state, and therefore the remaining useful time of the mechanical component; the
two phases that precede prognosis are fault detection, which consists in defining the
component’s level of healthiness, namely the potential presence of faults, followed by
fault diagnosis, which allows the specific sub-component affected by faults and thus their
particular nature to be properly identified.

The main disadvantage regarding Machine Learning techniques is that they require a
huge amount of data to be trained on, are not always as generalizable as we would like
them to be and may have onerous computational demands.

Despite the diffusion of new data-driven techniques to analyze vibrational signals
and detect the health state of the system, mathematical tools, deriving more or less directly
from the Fourier transform and defined either on the time or the frequency domain or on a
combination of them (i.e., signal-based techniques), remain still essential and irreplaceable
in light of the deep and detailed information they provide. We refer to dedicated books [1,2]
and articles [3,4] for an exhaustive description of the main signal-based techniques used
for diagnostic purposes, including most of those applied in this work.

In particular, in [3], which is devoted to the diagnostics of REBs, it is proven that signal-
based techniques, thanks to their analytical definition, which is formulated taking into
consideration to some extent the mathematical nature of the signal, allow fault signatures
to be clearly identified, and their temporal development to be fully traced, confirming
their ability as powerful means to constantly monitor the health state of a system even in
real-time applications. Other interesting recent articles on the diagnostics of REBs can be
found in [5–9].

The goal of this paper is to compare different signal-based analysis methods, applying
them in the study of the first bearing dataset released in 2014 by NASA IMS Center, which
represents a proper paradigmatic test bench to establish their potential. Unlike the other
two datasets, each involving the presence of a single fault and so often regarded as an ideal
case study to assess the feasibility of new techniques (see for example [10–12]), dataset
1 is well-known in the scientific community as a demanding challenge to analyze due
to the occurrence of three different faults, two of them on the same bearing. However,
its analysis is not blind because the Center itself provided researchers and industrialists
with the diagnostic report of the faults detected at the end of the experiment, and since its
publication the dataset has been intensively studied.

In [13], all the three datasets are successfully analyzed using Short Time Fourier Trans-
form (STFT), the Squared Envelope Spectrum (SES) based on the Kurtogram and Cyclic
Spectral Coherence (CSC), but especially for bearing 4, fault signatures remained barely
detectable. [14] draws a comparison between the performance of wavelet decomposition-
based denoising and Morlet wavelet filter-based denoising methods applied on dataset 1,
attesting the latter as more suitable and reliable to detect a weak signature of mechanical
impulse-like defect signals. The study carried out in [15] proposes a hybrid scheme that
combines EWT (Empirical Wavelet Transform) threshold filtering and the Teager energy
spectrum method to approach dataset 1, showing a better modal aliasing suppression effect
and more explicit frequency division segments than the traditional EMD (Empirical Mode
Decomposition) threshold filtering. In [16], Authors test the potential of Hjorth’s parame-
ters as diagnostic tools. In [17], a data-driven method based on Gath–Geva clustering and
operating on the energy spectrum and RMS value is used to identify the degraded state of
IMS bearings, proving good classification performance and resulting in fault diagnostic
accuracy, while in [18] a LAD (Logical Analysis of Data)-based decision model, an innova-
tive supervised learning data mining methodology, is designed and tested to detect faults
on the very same bearings. Ref. [19] deals with the phase of fault prognosis presenting
a Bayesian approach for the RUL (Remaining Useful Life) prediction of rolling bearings:
a modified Paris crack growth model is developed, and RUL distribution is estimated
applying the Metropolis–Hasting algorithm to the Markov chain Monte Carlo method.
In [20], the so-called feature engineering, aiming at Prognostics and Health Management
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(PHM), is conducted applying three metrics (Correlation, Monotonicity and Robustness) to
assess the suitability of statistical parameters as health indexes, but only considering the
third bearing of the test rig.

The state-of-the-art on the analysis of IMS dataset 1 previously summed up could be
further extended, but it is a fact that, probably due to the complexity of the case, these
signals have been so far much more frequently studied with data-driven methods (primarily
Neural Networks, as in [21,22], and the Hidden Markov Model, as in [23–26]) or hybrid
approaches ([27–32]) than with signal-based techniques.

The main contributions the present paper aims to provide are:

• A practical comparison of the efficacy of various signal-based condition monitoring
techniques, from the most elementary and general-purpose statistical parameters to
complex cyclostationary methods, touching all the three phases involved in predictive
maintenance, included signal pre-treatment strategies;

• A detailed study of IMS bearing dataset 1 that echoes the results of prolific research
works on the theme, but proves to be innovative for the ample number of techniques
applied successfully, highlighting fault signatures with remarkable clarity, without
resorting to data-driven techniques;

• A concrete proof of the validity of two of the most fruitful tools used for the study,
which are Cepstrum Pre-Whitening (CPW) and the cyclostationary technique of the
Improved Envelope Spectrum (IES), never applied before for the analysis of IMS
dataset 1, to the best of the Authors’ knowledge.

The paper is structured as follows: Section 2 contains the description of the experimen-
tal test rig from which the dataset is derived, and a brief introduction of the techniques used
for its analysis; Section 3 provides the most relevant results coming from their application;
Section 4 is a recapitulation on the level of efficacy proved by each method and the major
achievements they have been able to offer; and finally in Section 5 an overall conclusion
is drawn.

2. IMS Bearing Dataset and Signal Analysis Techniques
2.1. Description of IMS Dataset 1

As already mentioned, the signals that will be analyzed come from an open-access
dataset released in 2014 by the NASA Center for Intelligent Maintenance Systems (IMS) [33];
the focus is on the results of the first of three run-to-failure experimental campaigns
carried out at the University of Cincinnati, OH, USA, with support from Rexnord Corp.,
Milwaukee, MI, USA.

The test rig included four rolling bearings installed on a common shaft, set in rotation
at a constant speed of 2000 RPM by an AC motor coupled to the shaft via rub belts
(Figure 1). The four double row bearings were of type Rexnord ZA-2115, force-lubricated
by a circulation system that regulated the flow and the temperature and charged with a
26,690 N (6000 lbs) constant radial load applied by a spring mechanism. Eight PCB 353B33
High-Sensitivity Quartz ICP accelerometers were installed on the bearing housing (two
sensors for each bearing, mounted orthogonally along the x and y axes), and the sampling
frequency was set to 20,480 Hz. The dataset consists of individual files that are 1 s vibration
signal snapshots recorded at specific intervals, every 5 (for the first 54 acquisitions) or 10
min, but it is sometimes subjected to a series of interruptions that make the time history
not continuous (Figure 2).
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Figure 2. Raw signal and its actual time history for IMS dataset 1 (from [13]).

The experiment was stopped conventionally when the accumulation of debris on a
magnetic plug exceeded a certain level, indicating the possibility of an impending failure.
The resulting endurance duration was equal to 49,680 min (i.e., 34 days and 12 h), exceeding
the bearing designed lifetime, which was more than 100 million revolutions.

The most relevant experimental set-up characteristics and findings of IMS dataset 1 are
reported in Table 1. It should be stressed that this dataset is particularly valuable because
the bearing degradation was left to evolve naturally and was not artificially induced, as
may often happen to speed up the experimental test.
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Table 1. Experimental set-up characteristics and findings of IMS dataset 1 (from [33]).

Start-stop time and date From 22 October 2003 at 12:06:24 p.m.
To 25 November 2003 at 11:39:56 p.m.

Entire experiment timespan 49,680 min (34 days and 12 h)

Effective data acquisition duration 36 min

Number of files 2156

Number of channels (accelerometers) 8

Channel arrangement

Bearing 1: channels 1 and 2
Bearing 2: channels 3 and 4
Bearing 3: channels 5 and 6
Bearing 4: channels 7 and 8

File recording interval 10 min (5 min for the first 43 files)

Location of detected faults at the end of the experiment Bearing 3: inner race
Bearing 4: rolling element and outer race

Vibrational data collection was conducted with the National Instruments LabVIEW
program thanks to a NI DAQ Card-6062E data acquisition, and the analysis that will be
presented in this paper was developed with the software platform MATLAB 2021b by The
MathWorks [34].

Considering the rolling bearing mechanical characteristics and working conditions
of Table 2, it is possible to compute the value of the characteristic frequencies of the faults
they are typically subjected to during their operating life, i.e., the fault signatures, by using
the following formulas [1]:

BPFO =
n fr

2

(
1− d

D
cos φ

)
(1)

BPFI =
n fr

2

(
1 +

d
D

cos φ

)
(2)

FTF =
fr

2

(
1− d

D
cos φ

)
(3)

BSF =
frD
2d

[
1−

(
d
D

cos φ

)2
]

(4)

where:

• BPFO (BallPass Frequency, Outer Race) is the frequency representing the fault signa-
ture on the outer race;

• BPFI (BallPass Frequency, Inner Race) is the frequency representing the fault signa-
ture on the inner race;

• FTF (Fundamental Train Frequency) is the frequency representing the fault signature
on the bearing cage;

• BSF (Ball Spin Frequency) is the frequency representing the fault signature on the
rolling element.

See the rolling element bearing of Figure 3.
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Table 2. Rolling bearing mechanical characteristics and working conditions (from [33]).

Model Rexnord ZA-2115

Pitch diameter D 71.5 mm (2.815 inch)

Rolling element diameter d 8.4 mm (0.331 inch)

Number of rolling elements per row n 16

Load contact angle φ 15.17◦

Static load Q 26,690 N (6000 lbs.)

Shaft angular velocity ω 2000 rpm

The nominal rotation frequency of the transmission shaft fr can be directly obtained
from the working conditions:

fr =
ω

2π
=

2000 rpm
2π·60 s/min

= 33.3 Hz (5)

where the corresponding characteristic frequencies of the faults are reported in Table 3.

Table 3. Characteristic frequencies of the IMS test rig (from [33]).

Nominal rotation frequency of the shaft 33.3 Hz

Ball Pass Frequency Outer Race (BPFO) 236 Hz

Ball Pass Frequency Inner Race (BPFI) 297 Hz

Ball Spin Frequency (BSF) 278 Hz (2 × 139 Hz)

Fundamental Train Frequency (FTF) 15 Hz

2.2. Signal Analysis Techniques

In this Section, a list and a brief mathematical introduction of the diagnostic techniques
used to analyze vibration signals are provided.

Techniques are divided into the three main phases of the condition monitoring process,
i.e., fault detection, fault diagnosis and fault prognosis.
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Moreover, within the fault diagnosis techniques, signal denoising techniques, filters
and cyclostationary techniques are considered.

Fault detection techniques:

• Mean;
• Variance;
• Standard Deviation;
• Pea;
• Root Mean Squared value (RMS);
• Skewness;
• Crest Facto;
• Clearance Factor;
• Shape Factor;
• Impulse Factor;
• Peak-to-Peak;
• Hjorth’s Parameters;
• Detectivity.

Fault diagnosis techniques:

• Short-Time Fourier Transform (STFT);
• Power Spectral Density (PSD);
• Squared Envelope Spectrum (SES);
• Autoregressive Linear Prediction (ALP);
• Time-Synchronous Averaging (TSA);
• Kurtosis (time domain);
• Kurtogram.

Signal denoising techniques:

• Daubechies’ Wavelets;
• Cepstrum Pre-Whitening (CPW).
• Filters:
• FIR;
• Adaptive.

Cyclostationary techniques:

• Spectral Correlation (SC);
• Cyclic Spectral Coherence (CSC);
• Improved Envelope Spectrum (IES);
• Wigner–Ville Distribution (WVD).

Fault prognosis techniques:

• Correlation;
• Monotonicity;
• Robustness.

The use of numerous statistical parameters is due to their limited analytical and
computational complexity and their general and intuitive meaning for detection purposes,
although they just play the role of high-level indicators and need to be followed by more
in-depth, specific and elaborate techniques. Table 4 shows the mathematical definition of
the most common statistical parameters.

Hjorth’s parameters and Detectivity are statistical time-domain quantities, but their
application in the context of signal diagnosis is still unusual. The formers (Activity, Mobility,
Complexity) were introduced by Hjorth and Elema-Schönander in 1970 and are commonly
used in the analysis of electroencephalography (EEG) signals for feature extraction [35] and
in the tactile signal analysis in the robotic area [36]. They are related to the variance of the
signal and of its subsequent derivatives, and can be computed with minimum effort and
resources, suggesting their use in real-time application for the condition monitoring of ball
bearings or as a feature array for Machine Learning techniques.
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Table 4. Statistical parameters.

Parameter Abbrev. Formula

Mean Mean ∑ X
N

Variance Var ∑(X−X)
2

N−1

Standard Deviation STD
√

Var

Root Mean Squared Value RMS
√

∑ X2

N

Skewness Skew 1
N ∑(X−X)

3

STD3

Kurtosis Kurt 1
N ∑(X−X)

4

STD4

Peak Peak Max(|X|)

Crest Factor CF Peak
RMS

Clearance Factor CL Peak(
∑
√

X
N

)2

Shape Factor SF RMS
Mean

Impulse Factor IF Peak
Mean

Peak-to-Peak P2P Max(X)−Min(X)

The “Activity” of a vibration signal (Act(x)) is defined as the variance of its amplitude,
and therefore it has the same dimension of the signal (the one of the accelerations in the
current case) and it is directly related to its power.

“Mobility” (Mob(x)) is related to the variance of the vibration signal velocity, so it is
associated to the jerk (first time derivative of the signal) and its dimension is expressed as a
ratio per time unit.

“Complexity” (Com(x)) is a dimensionless parameter, connected to the variance of
the acceleration of the signal, hence to the snap (second time derivative of the signal and
four-time derivative of space).

Moreover, these three parameters can be also derived in the frequency domain, starting
from the spectral moments mn of the time signal x(t) [36]:

Act(x) = σ2(x) = lim
T→∞

1
T

∫ T

0
x2(t)dt = m0 =

∫ +∞

−∞
S(ω)dω

[
m/s2

]2
(6)

Mob(x) =

√
Act
( .
x
)

Act(x)
=

√
m2

m0

[
t−1
]

(7)

Com(x) =

√
Mob

( .
x
)

Mob(x)
=

√
m4/m2

m2/m0
[ ] (8)

where S(ω) is the power spectral function, defined as the product of the Fourier transform
F(ω) and its complex conjugate function F∗(ω):

S(ω) = F(ω)·F∗(ω) =
∫ +∞

−∞
x(t)·x∗(t)dt (9)

and the generic spectral moment of order n can be computed in the form:

mn = F(ω)·F∗(ω) =
∫ +∞

−∞
ωn·S(ω)dω (10)
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As for their interpretation in the field of predictive maintenance, Activity and Com-
plexity are proportional to the amplitude of the fault frequency components, while Mobility
is expected to reduce with fault progression.

In order to sum up the informative contribution of Hjorth’s parameters into a single
value, another quantity, called Detectivity (Detect), was introduced in [37] and defined as:

Detect = Act(dB) −Mob(dB) + Com(dB) (11)

where:

Act(dB) = 10· log10

(
Act

Actref

)
(12)

Mob(dB) = 10· log10

(
Mob

Mobref

)
(13)

Com(dB) = 10· log10

(
Com

Comref

)
(14)

The three terms in the right member of (11) are expressed in Decibel, after being
normalized by computing the ratio between their value on the signal to be diagnosed
and a reference value coming from their application to the data collected on the faultless
component. Mobility behaves as an attenuator due to its inverse trend with respect to the
evolution of the fault, while Activity and Complexity behave as amplifiers.

Due to the particular nature of the vibration signals produced by damaged rolling
bearings, which are classified as quasi-pseudo-cyclostationary of the second order, it is
convenient to use dedicated techniques, specifically formulated for their treatment. As
previously anticipated, four powerful and complex cyclostationary techniques have been
employed for the analysis of the dataset: (i) Spectral Correlation S2x(α, f ), defined in the
spectral frequency ( f )–cyclic frequency (α) domain as the bidimensional Fourier transform
of the Instantaneous Autocorrelation Function R2x(t, τ); (ii) Cyclic Spectral Coherence
CSCoh2x(α, f ), which is a normalized version of the previous technique; (iii) Improved
Envelope Spectrum IESCSCoh(α), obtained as the integral of CSCoh2x computed on a limited
spectral frequency band [F1, F2], providing information similar to that provided by the
traditional envelope analysis but from a different and unconventional perspective; and
iv) Wigner–Ville Distribution WVD2x(t, f , φ), belonging to the class of the time-frequency
domain techniques [38]:

S2x(α, f ) = FTt→αFTτ→ f {R2x(t, τ)} (15)

CSCoh2x(α, f ) =
S2x(α, f )√

S2x(0, f )S2x(0, f − α)
(16)

IESCSCoh(α) =
1

F2 − F1

∫ F2

F1

|CSCoh2x(α, f )|d f (17)

WVD2x(t, f , φ) = FTτ→ f {Rs2x(t, τ)} (18)

where:

Rs2x(t, τ) =
∫ +∞

−∞
x(u + τ/2)x∗(u− τ/2)φ(t− u, τ)du (19)

As for fault prognosis, the suitability of the statistical parameters (excluding Hjorth’s
ones) as metrics exploitable for predicting future signal trends, namely the so-called “health
indicators” (or “health indexes”—HI), was assessed with the computation of the prognostic
values of Correlation (Corr), Monotonicity (Mon) and Robustness (Rob), defined as [20]:

Corr(T, X) =
Cov(T, X)

σTσX
(20)
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Mon(T, X) =
Cov(rT , rX)

σrT σrX

(21)

Rob(T, X) =
1
k ∑

k
exp

(
−
∣∣∣∣∣X(k)− X̃(k)

X(k)

∣∣∣∣∣
)

(22)

in which X is the evaluated quantity (as a statistical parameter), T is the time domain,
Cov is the covariance, r represents the rank of a vector, composed by the positions of its
elements according to a given sorting, and ˜ is the symbol of the smooth value, obtained
with the use of a moving-average filter applied on all the k− 1 elements before the k-th one.

Specifically, Correlation (aka Pearson’s Correlation) measures the linearity between X
and T and is expressed by a number included in the interval [−1, 1] (where 1 states perfect
linearity), Monotonicity (aka Spearman Correlation) is defined on the same range and
provides information about the continuity of the increasing or decreasing of the quantity
over time, and Robustness is related to the amount of noise that affects the signal, and
therefore its value is desirably as low as possible so not to compromise the prognostic
ability of the parameter.

3. Results

In this Section, the diagnostic results derived from the application of the aforemen-
tioned techniques to the considered dataset will be presented. To avoid redundancy,
only the more meaningful elaborated signals between those coming from the couple of
orthogonal sensors mounted on each bearing will be considered.

3.1. Fault Detection

The computation of statistical parameters is of paramount importance to reveal the
presence of an incoming fault, accomplishing the first phase of condition monitoring. In the
following analyses, parameter calculation is performed on each set of 20,480 ( fs) samples
acquired for each second of testing, so that only one statistical value per second is obtained.

If a parameter trend is examined along the time duration of the whole registration
(made continuous with the exclusion of the interruptions of acquisition occurring in real
time), it can be observed that the Mean, Variance and Standard Deviation of bearings 1 and
2 (Figures 4a and 5a) remain almost constant, with a slight increase just at the very end of
the experiment, probably due to the propagation of vibrations produced by other damaged
bearings and detected by sensors 1 and 3 because of the physical continuity of the testing,
in which all the components are installed on a single shaft. RMS value, Skewness and
Kurtosis (Figures 4b–d and 5b–d), albeit oscillating, do not exhibit a global monotonicity
too, except for in the last measurements, for the reason just mentioned.

On the contrary, the presence of faults on bearings 3 and 4 can be clearly deduced from
the RMS value (Figures 6b and 7b) and even more from the Kurtosis (Figures 6d and 7d),
which starting from a value around 3, typical of a Gaussian distribution, raises over 70 from
the 1831st second (31st day of test) for the third bearing and from the 1486th second (28th
day of test) for the fourth one. Mean, Variance and Standard Deviation (Figures 6a and 7a)
remain mostly stable, and Skewness (Figures 6c and 7c) does not show a clear reduction, as
expected in the case of a fault.
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Similar results can be obtained by considering advanced statistical parameters, i.e.,
Peak, Crest Factor, Clearance Factor, Shape Factor, Impulse Factor and Peak-to-Peak. On
one hand, these parameters do not provide relevant information if applied to the signals
from bearings 1 and 2 (Figures 8 and 9). On the other hand, with respect to the vibration
signals acquired from bearings 3 and 4, consistent information is provided by Clearance
Factor (Figures 10a and 11a) and Impulse Factor (Figures 10b and 11b).
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Figure 8. Second group of statistical parameters applied to the signal from sensor 1 on bearing 1:
(a) Peak (red), Crest Factor (blue), Clearance Factor (green); (b) Shape Factor (red), Impulse Factor
(blue), Peak-to-Peak (green).
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Figures 12–15 display the trend of Hjorth’s parameters (omitting Activity, which is
equivalent to Variance) and Detectivity; the latter has been computed using the first 5 days
files (first 51 s of acquisition) to obtain the reference values involved in its formulation (11).
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bearing 4.

Their behavior agrees with that of the previous parameters: the Mobility
(Figures 12a and 13a) and Complexity (Figures 12b and 13b) of bearings 1 and 2 have op-
posite trends than those that would be associated to a fault, while for bearings 3 and 4 Mobility
slightly decreases (Figures 14a and 15a) and Complexity increases (Figures 14b and 15b).

However, Detectivity is the parameter that offers the clearest signature of fault with
a significant increase in its value (Figures 14c and 15c), proving its efficacy in the field
of predictive maintenance as a combination (and an informative summa) of Hjorth’s
parameters. The same temporal occurrence of faults previously deduced via statistical
parameters is also observed considering Detectivity, with a quite-late fault on bearing 3
and an earlier one on bearing 4.
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3.2. Fault Diagnosis

Beside pointing out the presence of faults, the phase of fault detection is essential to
temporally locate their occurrence and then to identify the limited portion of signal to be
analyzed in the second step of the study, which is fault diagnosis. This is based on the
application of more complex techniques with higher computational effort to determine the
exact nature of each fault, i.e., the particular bearing sub-component affected by it.

Since the statistical parameters previously adopted for the fault detection revealed
the presence of faults only on bearings 3 and 4, and not on bearings 1 and 2, these last
two bearings are not further considered, and the fault diagnosis is carried out only on
bearings 3 and 4.

The signal from the last 49 s of acquisition, belonging to the last part of the 33rd and all
the 34th day of the experiment, will be considered for bearing 3, as well as the signal from
the 26th day until the end of the campaign for bearing 4, in light of the earlier occurrence of
faults on it, which tend to gradually reduce their impact on the signal and their impulsive
nature due to progressive smoothing of the damaged surfaces.

3.2.1. Short-Time Fourier Transform (STFT)

Before filtering the signal, it is advisable to study it in its raw version to prevent the
loss of important information on account of a premature and inaccurate pre-treatment.

The first applied technique is the Short-Time Fourier Transform, defined on the time-
frequency domain, assuming a Hamming window with a length equal to 1024 and without
overlap, as suggested in [13].

It is possible to detect a general amplitude increase in the spectral components of
bearing 3 starting from the 12th second (of the last 49 considered), even more evident
beyond the 45th (Figure 16), with the appearance of the fourth and third harmonics of
the BPFI (297 Hz), respectively, still completely invisible in the first days of screening
(Figure 17); in the chromatic graph related to bearing 4’s signal (Figure 18), a clear display
of the fourth harmonic of the BPFO is detectable (although considering 238 Hz instead of
236 Hz, probably because of slipping among parts) as well as the presence of the second
and sixth harmonics of the BSF (278 Hz). It is worth noting that traces of the same harmonic
series are visible even in the signal acquired by the third accelerometer on bearing 2
(Figure 19), especially those related to the fault occurring on bearing 3, which is contiguous
to it on the shaft.
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3.2.2. Power Spectral Density (PSD)

Starting again from the raw signal, the Power Spectral Density technique has been
applied, obtaining information about the frequency distribution of the signal power; its
formulation implies the computation of the signal Fourier transform, the corresponding
square (power), the division of the result by the sampling frequency fs and the number of
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sampled values N (density), a chain of operations that may be equivalently replaced by the
evaluation of the periodogram:

PSD( f ) =
1

fs·N

∣∣∣∣∣N−1

∑
n=0

xne−j2π f ∆t n

∣∣∣∣∣
2

with − 1
2

∆t ≤ f ≤ 1
2

∆t, ∆t =
1
fs

(23)

In the graphs, shown in linear scale for purposes of clarity, some harmonics of the
BPFI for bearing 3 (Figure 20, with harmonics highlighted in magenta) and of the BPFO for
bearing 4 (Figure 21, with harmonics highlighted in red as multiples of 238 Hz instead of
236 Hz, as stated before) are already visible, but their detection is strongly affected by the
emergence of other frequency lines related to the test rig mechanical structure and hence
still present at the beginning of the experiment (Figure 22); specifically, they are located at
160 Hz and their harmonic frequencies (320 Hz and 480 Hz) and at 505 Hz and its striking
double (1011 Hz). There are also peaks at very high frequencies, around 4000–5000 Hz and
9000 Hz, probably related to the system natural resonances. It is curious to observe that the
first harmonic of the BPFO is more clearly visible in the spectrum of bearing 3 than in that
of bearing 4 due to the cross-talk among contiguous sensors.
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3.2.3. Squared Envelope Spectrum (SES)

The Squared Envelope Spectrum is considered a benchmark among the diagnostic tech-
niques and it is attained through signal demodulation, firstly filtering the signal (in the case
under examination, with a low-pass filter with cut-off frequency equal to fs/16 = 1280 Hz),
and then obtaining the analytic signal with the Hilbert transform before finally computing
the envelope signal as the absolute value of the analytic one and applying the Fourier
transform to return to the frequency domain.

It is known from the literature that squaring the signal at the very beginning of
this process (i.e., correlating the signal with itself) is beneficial because it emphasizes
the modulation and the clarity of information detectable in the final spectrum (while a
squaring in the frequency domain would harmfully blur it). This operation is conveniently
introduced for the considered dataset, which is characterized by inner race and rolling
element faults, typically modulated by shaft rotation frequency fr and cage frequency
FTF, respectively (Figure 23); as a matter of fact, in Figures 24 and 25 the BPFI and BSF
harmonics are accompanied by the characteristic modulation sidebands.
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Specifically, in Figure 24, regarding bearing 3, the even harmonics of the shaft rotation
frequency appear distinctly, while the odd ones emerge from noise only when near to the
BPFI harmonics, as their sidebands.

Truthfully, the BPFI harmonics are not present directly, but indirectly, through the
excitation exerted on those of shaft rotation; namely, the spectrum shows frequency lines at
301 Hz and 602 Hz, multiples of fr = 33.3 Hz, rather than at 297 Hz and 594 Hz, fundamental
and second harmonic frequencies of the BPFI; in spite of the closeness of these values, their
difference is not negligible or imputable to a mere approximation.

In Figure 25, about bearing 4, at least the first three harmonics of the BPFO can be
detected, not subjected to modulation effects, and so can those of the BSF (centered on the
multiple frequencies of 282 Hz instead of the nominal 278 Hz) with sidebands distant from
the fault frequencies by the cage frequency, with the left band higher than the right one,
unlike the theoretical case (Figure 23).

3.2.4. Time-Synchronous Average (TSA)

While fault frequency components have already been recognized thanks to the tech-
niques applied so far, in order to accomplish a comprehensive and detailed study it is
necessary to consider pre-processing techniques with the aim of denoising and filtering
the raw signal to remove the presence of noise and masking components unrelated to
faults, such as the harmonic series of the frequencies at 160 Hz and 505 Hz, making fault
signatures even more easy to detect.

The following techniques will be applied, re-starting each time from the original
signal, and will be followed by the use of the SES to make a consistent comparison among
their effect.

The Time-Synchronous Average is a common time-domain diagnostic tool used as a
pre-treatment technique to remove the deterministic components from the signal, bringing
to light in the residual part those connected to bearing faults, which are cyclostationary; for
the signal under test, the average has been made on time intervals that are synchronous to
the shaft rotation for bearing 3 and to the cage rotation for bearing 4. The resulting graphs
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(Figures 26 and 27) are similar to those already obtained (Figures 24 and 25, respectively),
with no added information, making the technique not useful.
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3.2.5. Autoregressive Linear Prediction (ALP)

According to the common practice, the Autoregressive Linear Prediction technique is
used as a pre-whitening action and it implies at first obtaining the weighting coefficients of
the fourth-order autoregressive model (with a form similar to that of a IIR filter), applying
Yule–Walker equations and the Levinson–Durban recursive algorithm, then computing the
prediction and finally deriving the residual signal as the difference between the initial and
the predicted ones.

In the present case, ALP and SES techniques remove part of the background noise, but
the improvement on the information content remains poor (Figures 28 and 29).
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3.2.6. Daubechies’ Wavelets

A more advanced technique for denoising purposes is that based on the wavelets,
a family of functions with a fixed shape, but which can be shifted and dilated in the
time starting from the definition of a root function, i.e., the mother wavelet. Specifically,
Daubechies’ orthogonal wavelets of the fifth level have been chosen, determining the extent
and threshold values of the blocks with the James–Stein method.

The signal processed via Wavelets and SES techniques appears denoised and cleaned
up from masking components (Figures 30 and 31); however, the fault spectral lines, albeit
visible, are not as emerging as would be desirable.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 35 
 

3.2.5. Autoregressive Linear Prediction (ALP) 
According to the common practice, the Autoregressive Linear Prediction technique is 

used as a pre-whitening action and it implies at first obtaining the weighting coefficients 
of the fourth-order autoregressive model (with a form similar to that of a IIR filter), ap-
plying Yule–Walker equations and the Levinson–Durban recursive algorithm, then com-
puting the prediction and finally deriving the residual signal as the difference between 
the initial and the predicted ones. 

In the present case, ALP and SES techniques remove part of the background noise, 
but the improvement on the information content remains poor (Figures 28 and 29). 

 
Figure 28. ALP + SES applied to the signal from sensor 6 on bearing 3 (last 49 s). 

 
Figure 29. ALP + SES applied to the signal from sensor 7 on bearing 4 (last 163 s). 

3.2.6. Daubechies’ Wavelets 
A more advanced technique for denoising purposes is that based on the wavelets, a 

family of functions with a fixed shape, but which can be shifted and dilated in the time 
starting from the definition of a root function, i.e., the mother wavelet. Specifically, 
Daubechies’ orthogonal wavelets of the fifth level have been chosen, determining the ex-
tent and threshold values of the blocks with the James–Stein method. 

The signal processed via Wavelets and SES techniques appears denoised and cleaned 
up from masking components (Figures 30 and 31); however, the fault spectral lines, albeit 
visible, are not as emerging as would be desirable. 

 

Figure 30. Wavelets + SES applied to the signal from sensor 6 on bearing 3 (last 49 s).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 35 
 

Figure 30. Wavelets + SES applied to the signal from sensor 6 on bearing 3 (last 49 s). 

 
Figure 31. Wavelets + SES applied to the signal from sensor 7 on bearing 4 (last 163 s). 

3.2.7. Kurtogram and Filters 
With the intention of selecting the most impulsive frequency bands, a Kurtogram has 

been used to identify the center frequency and bandwidth on which to configure the in-
tervention of a filter (Figure 32). 

 
(a) 

 
(b) 

Figure 32. Kurtogram applied to the signal from sensor 6 on bearing 3 (last 49 s) (a) and to the signal 
from sensor 7 on bearing 4 (last 163 s) (b). 

A 10th order band-pass FIR filter has been chosen, which is able to slightly increase 
the signal Kurtosis (Figures 33 and 34; nevertheless, after the computation of the SES tech-
nique (Figures 35 and 36), it appears clear that the filter brought out a frequency band in 

Figure 31. Wavelets + SES applied to the signal from sensor 7 on bearing 4 (last 163 s).

3.2.7. Kurtogram and Filters

With the intention of selecting the most impulsive frequency bands, a Kurtogram
has been used to identify the center frequency and bandwidth on which to configure the
intervention of a filter (Figure 32).
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Figure 32. Kurtogram applied to the signal from sensor 6 on bearing 3 (last 49 s) (a) and to the signal
from sensor 7 on bearing 4 (last 163 s) (b).

A 10th order band-pass FIR filter has been chosen, which is able to slightly increase the
signal Kurtosis (Figures 33 and 34; nevertheless, after the computation of the SES technique
(Figures 35 and 36), it appears clear that the filter brought out a frequency band in which
the fault components were not predominant, probably because the impulsiveness detected
by the Kurtogram was related to phenomena different from the impacts caused by faults
on the surfaces or was ascribable to the signal transmission path.
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3.2.8. Cepstrum Pre-Whitening (CPW) 
Unlike the mostly unsuccessful trials just reported, the use of the Cepstrum Pre-Whit-

ening proves to be a powerful resource for the application under examination; it is a rela-
tively new technique that has gained appreciation both in the literature [39] and in indus-
trial practice [40], but it is not yet included in the most traditional and ever-invoked set of 
diagnostics techniques. It can be employed in two ways: the first one exploits the real 
cepstrum to perform the “editing”, removing through liftering the peaks of the periodic 
components that correspond to impulses at particular harmonics; the second method, far 
more radical, sets the whole real cepstrum to zero except for the amplitude at the null 
quefrency, removing both resonances and discrete frequencies, and then resumes to time-
domain after a recombination with the unwrapped phase of the original signal, neglected 
in the real cepstrum. This latter approach is actually easily implemented by dividing the 
signal Fourier transform by its absolute value and after inverse transforming it back to the 
time-domain: 𝑥 (𝑡) = 𝐹 𝐹(𝑥(𝑡))|𝐹(𝑥(𝑡)|  (24)

The conceptual and operative simplicity of this technique and its limited computa-
tional request are as appreciable as the results it provides. The only drawback is repre-
sented by the reduction of various orders of magnitude of all the amplitudes, even those 
that are useful; however, this aspect does not affect its efficacy since the desired compo-
nents clearly stand out from the others and from noise, which are both significantly miti-
gated. 

Envelope spectra are indeed dominated by the frequency lines of the fault harmonic 
series: as for bearing 3, Figures 37 and 38 confirm the previously stated conclusion that 
the inner race fault harmonics are not visible directly but indirectly, through the excitation 
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3.2.8. Cepstrum Pre-Whitening (CPW)

Unlike the mostly unsuccessful trials just reported, the use of the Cepstrum Pre-
Whitening proves to be a powerful resource for the application under examination; it is
a relatively new technique that has gained appreciation both in the literature [39] and in
industrial practice [40], but it is not yet included in the most traditional and ever-invoked
set of diagnostics techniques. It can be employed in two ways: the first one exploits the real
cepstrum to perform the “editing”, removing through liftering the peaks of the periodic
components that correspond to impulses at particular harmonics; the second method, far
more radical, sets the whole real cepstrum to zero except for the amplitude at the null
quefrency, removing both resonances and discrete frequencies, and then resumes to time-
domain after a recombination with the unwrapped phase of the original signal, neglected
in the real cepstrum. This latter approach is actually easily implemented by dividing the
signal Fourier transform by its absolute value and after inverse transforming it back to the
time-domain:

xCPW(t) = F−1
{

F(x(t))
|F(x(t))|

}
(24)

The conceptual and operative simplicity of this technique and its limited computa-
tional request are as appreciable as the results it provides. The only drawback is represented
by the reduction of various orders of magnitude of all the amplitudes, even those that are
useful; however, this aspect does not affect its efficacy since the desired components clearly
stand out from the others and from noise, which are both significantly mitigated.

Envelope spectra are indeed dominated by the frequency lines of the fault harmonic
series: as for bearing 3, Figures 37 and 38 confirm the previously stated conclusion that the
inner race fault harmonics are not visible directly but indirectly, through the excitation of
those of the shaft rotation frequency that are near to them and of its even ones in general
thanks to modulation effects; in the spectrum of bearing 4 (Figure 39, the cage frequency
harmonics are undoubtedly present, as well as those of the BPFO, until the 11th one, and
those of the BSF are present to a lesser extent (until the 6th one, barely visible), accompanied
by the modulation sidebands at a distance equal to the FTF; it is important to note that
the strong presence of the harmonics of the shaft and cage rotation frequencies should not
be considered a masking factor to be removed—on the contrary, it is just related to faults
and ought to be seen as their indirect sign, not present at the beginning of the experiment
(Figure 40).
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CPW has therefore been capable of deleting all the components unrelated to faults,
including the harmonic series based on the fundamental frequencies at 160 Hz and 505 Hz
and the peaks at very high frequency coming from structural resonances, leaving the three
fault signatures thoroughly visible and unmistakably detectable.

3.2.9. Cyclostationary Analysis

Given that the analysis conducted so far has allowed us to perform the second phase
of condition monitoring, namely the fault diagnosis, without taking into consideration
the particular nature of the signal in question, for the sake of completeness it is worth
trying to apply some techniques specifically formulated for the study of second-order
cyclostationary signals, which are the ones actually produced by the damaged bearings.
The purpose is twofold: (i) validating the previous conclusions by taking a substantially
different point of view, and (ii) testing the efficacy of these tools, which are potentially more
powerful but also more complex to understand, interpret and handle.

It is well known that there is a point of connection between stationary and cyclosta-
tionary techniques, owing to the mathematical identity between the integral of the Spectral
Correlation function made along all the spectral frequencies and the Squared Envelope
Spectrum. It seems then reasonable to compute the Improved Envelope Spectrum (IES)
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in order to verify that it offers information similar to that obtained with the SES and to
understand the differences between them, if any.

Three-dimensional chromatic maps displaying Spectral Correlation and Cyclic Spectral
Coherence cannot be figured out immediately due to the abundance of information, but seen
from above, i.e., projected on the frequency plane, they show a preferential arrangement of
the peaks at cyclic frequencies α, which correspond to those of faults and their modulating
ones (even the harmonics of the shaft rotation frequency and odd harmonics near to those
of the BPFI for bearing 3 in Figures 41 and 42 and harmonics of the BPFO, FTF and BSF
for bearing 4 in Figures 43 and 44) and at spectral frequencies f , which are always exact
multiples of 160 Hz or 80 Hz (320 Hz, 3120 Hz, 3760 Hz, 3680 Hz, 3840 Hz, 5280 Hz); these
last frequencies were already observed as being related to system periodicities, although
it is not possible to surely state their physical origin with the information provided on
the dataset.
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Coming back to the dependence from a single variable, the IES (Figures 45 and 46),
computed as the integral of the Cyclic Spectral Coherence on the spectral frequency band
[0 10,000 Hz] (nearly more like an EES than an IES), puts the stress on the same spectral
frequencies that represent fault signatures, even if with a bit less emphasis with respect
to Figures 37, 38 and 40. This makes a lot of sense because the IES was applied on the
raw signal while, in the previous paragraph, the signal was pre-processed via the radical
technique of the CPW.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 27 of 35 
 

  
(a) (b) 

Figure 43. Spectral Correlation applied to the signal from sensor 7 on bearing 4 (last 163 s) seen from 
¾ view (a) and from above (b). 

  
(a) (b) 

Figure 44. Cyclic Spectral Coherence applied to the signal from sensor 7 on bearing 4 (last 163 s) 
seen from ¾ view (a) and from above (b). 

Coming back to the dependence from a single variable, the IES (Figures 45 and 46), 
computed as the integral of the Cyclic Spectral Coherence on the spectral frequency band 
[0 10,000 Hz] (nearly more like an EES than an IES), puts the stress on the same spectral 
frequencies that represent fault signatures, even if with a bit less emphasis with respect to 
Figures 37, 38 and 40. This makes a lot of sense because the IES was applied on the raw 
signal while, in the previous paragraph, the signal was pre-processed via the radical tech-
nique of the CPW. 

 
Figure 45. IES applied to the signal from sensor 6 on bearing 3 (last 49 s). Figure 45. IES applied to the signal from sensor 6 on bearing 3 (last 49 s).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 28 of 35 
 

 
Figure 46. IES applied to the signal from sensor 7 on bearing 4 (last 163 s). 

Applying the previous cyclostationary techniques to excerpts of the original signal 
all along the experiment time duration (omitting the resulting plots for brevity), the fault 
history can be traced more precisely than it has been before: the inner race fault on bearing 
3 occurs almost at the end of the test (33rd–34th day), while the outer race fault on bearing 
4 can be detected from day 28 and that on the rolling element is still present from around 
the 26th day and dominates the other, but it is already less visible in Figure 46, probably 
due to the progressive smoothing of the fault pit caused by friction. 

3.2.10. Wigner–Ville Distribution (WVD) 
Strictly speaking, WVD has to be ranked among the time-frequency domain tech-

niques, even if it is characterized by a mathematical formulation that is rather similar to 
that of the cyclostationary techniques and is suitable for the analysis of the same type of 
signals. 

Looking at the respective plots, the presence of cyclic phenomena related to fault de-
velopment, totally absent in the initial phase, can be detected, albeit more vaguely than 
before. Figure 47 shows a series of peaks at the spectral frequency of 5280 Hz (still an exact 
multiple of 160 Hz), spaced from each other by a period (cycle) equal to 30 ms, i.e., the 
inverse of the shaft rotation frequency fr. A marked impulsiveness features in Figure 48a 
at the spectral frequency of 4000 Hz (25 × 160 Hz), and its zoom (Figure 48b) is dominated 
by a train of alternated chromatic bands at the spectral frequencies of 240 Hz (1.5 × 160 
Hz) and 480 Hz (3 × 160 Hz), spaced apart by a time interval equal to the inverse of the 
BPFO and its double, respectively (about 4 ms and 2 ms). 

Figure 46. IES applied to the signal from sensor 7 on bearing 4 (last 163 s).



Appl. Sci. 2023, 13, 5977 29 of 35

Applying the previous cyclostationary techniques to excerpts of the original signal
all along the experiment time duration (omitting the resulting plots for brevity), the fault
history can be traced more precisely than it has been before: the inner race fault on bearing
3 occurs almost at the end of the test (33rd–34th day), while the outer race fault on bearing
4 can be detected from day 28 and that on the rolling element is still present from around
the 26th day and dominates the other, but it is already less visible in Figure 46, probably
due to the progressive smoothing of the fault pit caused by friction.

3.2.10. Wigner–Ville Distribution (WVD)

Strictly speaking, WVD has to be ranked among the time-frequency domain techniques,
even if it is characterized by a mathematical formulation that is rather similar to that of the
cyclostationary techniques and is suitable for the analysis of the same type of signals.

Looking at the respective plots, the presence of cyclic phenomena related to fault
development, totally absent in the initial phase, can be detected, albeit more vaguely than
before. Figure 47 shows a series of peaks at the spectral frequency of 5280 Hz (still an exact
multiple of 160 Hz), spaced from each other by a period (cycle) equal to 30 ms, i.e., the
inverse of the shaft rotation frequency fr. A marked impulsiveness features in Figure 48a at
the spectral frequency of 4000 Hz (25 × 160 Hz), and its zoom (Figure 48b) is dominated by
a train of alternated chromatic bands at the spectral frequencies of 240 Hz (1.5 × 160 Hz)
and 480 Hz (3 × 160 Hz), spaced apart by a time interval equal to the inverse of the BPFO
and its double, respectively (about 4 ms and 2 ms).
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3.2.11. Comparisons

In this part, in order to recapitulate the obtained results, a list of the 10 fault diagnosis
methods previously introduced is reported, where the advantages and disadvantages of
each method are described.

• STFT. Advantages: able to detect the higher-order harmonics of the BPFI for bearing
3 and of the BPFO and BSF for bearing 4. Disadvantages: not able to detect the
corresponding first-order harmonics.

• PSD. Advantages: able to detect some harmonics of the BPFI for bearing 3 and of the
BPFO for bearing 4. Disadvantages: not able to detect the harmonics of the BSF for
bearing 4, and presence of frequency lines related to structural resonances.

• SES. Advantages: able to detect the harmonics of the shaft rotation frequency and
BPFI for bearing 3 and of the BPFO and BSF for bearing 4. Disadvantages: presence of
high noise and masking components.

• TSA + SES. Advantages and disadvantages: exactly the same of SES alone.
• ALP + SES. Advantages and disadvantages: the same of SES alone, with a reduction

in part of the background noise.
• Daubechies’ Wavelets + SES. Advantages and disadvantages: the same of SES alone,

with a little reduction in noise and masking components.
• FIR filter + SES. Advantages and disadvantages: exactly the same of SES alone.
• CPW + SES. Advantages: able to detect the harmonics of the shaft rotation frequency

and BPFI for bearing 3 and of the BPFO and BSF for bearing 4 with very low noise.
Disadvantages: reduced amplitude of the response peaks.

• IES. Advantages: able to detect the harmonics of the shaft rotation frequency and
BPFI for bearing 3 and of the BPFO and BSF for bearing 4 with relatively low noise.
Disadvantages: analysis performed on the raw (i.e., not pre-processed) signal.

• WVD. Advantages: able to detect some harmonics of the shaft rotation frequency
for bearing 3 and of the BPFO for bearing 4. Disadvantages: not able to detect the
harmonics of the BPFI for bearing 3 and of the BSF for bearing 4.

3.2.12. Diagnostic Accuracy

In this section, the accuracy of the fault diagnosis techniques previously considered is
evaluated quantitatively. To this end, we selected the statistical parameter Kurtosis as the
diagnostic accuracy index of the specific signal processing technique adopted, which usually
denotes the impulsivity of the vibration signal in the time domain. In the present case,
Kurtosis is computed in the frequency domain, indicating the impulsivity of the harmonics
of the shaft rotation and fault frequencies, i.e., the emerging of the related peaks with
respect to noise, and therefore the accuracy of the signal processing method considered.

In Table 5, the values of Kurtosis computed for the different fault diagnosis techniques
previously considered are reported. Signals from both sensor 6 on bearing 3 (last 49 s) and
sensor 7 on bearing 4 (last 163 s) are processed within the frequency bandwidth 0–1000 Hz.

Table 5. Kurtosis of the fault diagnosis techniques considered.

Technique Bearing Kurtosis

PSD
3 46.3 (Figure 20)

4 41.1 (Figure 22)

SES
3 22.7 (Figure 24)

4 17.5 (Figure 25)

TSA + SES
3 23.0 (Figure 26)

4 17.8 (Figure 27)

ALP + SES
3 24.2 (Figure 28)

4 18.2 (Figure 29)
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Table 5. Cont.

Technique Bearing Kurtosis

Wavelets + SES
3 22.9 (Figure 30)

4 17.5 (Figure 31)

FIR Filter + SES
3 51.2 (Figure 34)

4 38.6 (Figure 36)

CPW + SES
3 86.0 (Figure 38)

4 81.7 (Figure 40)

IES
3 65.7 (Figure 45)

4 58.6 (Figure 46)

These analyses make it explicit that all the employed techniques have produced rather
impulsive trends. While PSD shows higher values of Kurtosis than SES, all the combinations
of the latter with other preliminary methods lead to a trivial increase in the numbers in the
third column. Indeed, the maximum values of Kurtosis are found for the combination of
CPW and SES, and for IES methods, and therefore it is confirmed that these techniques are
the most effective in the fault diagnosis of the IMS first bearing dataset. It must be stressed
that the FIR Filter also exhibits significant values but detects dynamics not directly related
to the phenomenon of faults, as mentioned above.

3.3. Fault Prognosis

After fault detection and diagnosis, the third phase required to accomplish the whole
condition monitoring of a signal is the fault prognosis, which implies making a prediction
about the future signal trends, beyond the end of real data, with a certain level of prob-
abilistic confidence, with the goal of estimating the component’s Remaining Useful Life
(RUL). This operation represents the key point to identify the optimal time to replace a
mechanical part, in the trade-off between the cost minimization due to the intervention on
the system and the cost of the new component, fully exploiting the service life of the one to
remove on one hand, and the major cost to bear in case of a catastrophic failure occurs on
the other, leading to a harmful stop of production, which is absolutely to be prevented.

Prognosis issues are often carried out making use of advanced data-driven techniques
belonging to the domain of AI and specifically of Machine Learning, which are programmat-
ically beyond the scope and the intention of this paper. This section is meant for providing
a first glance at that field, identifying the most recommended statistical parameters for
prognostic considerations on the IMS dataset.

As stated before, the bearings’ end of life were conventionally determined through
a lubricant-based analysis; however, it is still feasible to determine how reliable informa-
tion extrapolated with statistical operators may be about the behavior of the damaged
components if brought to the extreme of degradation.

For this reason, the previously mentioned parameters of Correlation, Monotonicity
and Robustness, typical indicators used in health management, have been computed on
the statistical tools, similarly to what was conducted in [20], at first on every second of
acquisition, then averaging the results on the entire test duration and finally obtaining a
single quantity for each statistical parameter and each bearing as the average of the three
indexes, in the same way adopted for Hjorth’s parameters and Detectivity.

Histograms depicted in Figure 49 clearly suggest that Mean and Skewness are not
proper instruments for prognostic operations, as they were not so useful for fault detection
either, while RMS value, Variance, Standard Deviation and Peak-to-Peak prove to be the
most reliable quantities to be used as a solid base for future estimations. It is interesting
to notice that, as may be expected, the parameters evaluated on the signals coming from
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the two damaged bearings perform better as prognostic tools than when applied on the
healthy components.
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4. Discussion

From the analyses previously conducted, the following considerations can be drawn
on the efficacy of the involved diagnostic techniques for the study of IMS dataset 1:

• The initial statistical approach allowed the fault detection phase to be executed, bring-
ing to light the occurrence of different faults on bearings 3 and 4, and suggesting
the time excerpts of the signal to focus on in the following analyses: in particu-
lar, RMS value, Kurtosis and Detectivity were proven to be the most informative
statistical parameters.

• Diagnostic techniques, such as STFT, PSD and SES, even individually, provided a
fundamental contribution to identifying the exact nature and temporal location of
faults throughout the experiment, also taking advantage of the comparison with
faultless signals, at the beginning of the test or coming from healthy bearings; it was
then possible to confirm the diagnostic report diffused by the IMS Center itself, which
attests the presence of:

- A rather late inner race fault on bearing 3, occurring since day 32, which does not
show directly but through the excitation of the spectral harmonics of the shaft
rotation frequency; the latter also has modulation effects on the BPFI (even though
the interpretation of this fault as located at multiple frequencies of 301 Hz instead
of the nominal 297 Hz is still potentially acceptable);

- An outer race fault on bearing 4, detectable for certain from day 28, due to the
emergence of various harmonics of the BPFO, without modulating phenomena;

- A rolling element fault on bearing 4, detectable from day 26, with the appearance
of the harmonics of the BSF and modulated by those of the cage rotation (FTF),
raised themselves by the fault.

On the other hand, since these techniques have been applied directly on the raw (i.e.,
not pre-processed) signal, they then present high noise and masking components within the
amplitude–frequency response pattern, and therefore they must be preceded by suitable
signal processing methods to obtain accurate results.
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• TSA, ALP and Daubechies’ Wavelets did not prove to be sufficiently useful as signal
pre-treatment techniques in combination with SES.

• FIR and adaptive filters based on the Kurtogram were not able to select the frequency
band dominated by fault signs.

• The CPW technique turned out to be a very powerful and efficient tool to pre-whiten
the signal in combination with SES, by removing all the masking components and
noise and therefore highlighting the fault signatures.

• The second-order cyclostationary techniques, especially IES, which are directly applied
on the raw signal, were able to correctly detect the harmonics of the fault frequencies
for the defective bearings presenting relatively low noise levels.

• It should be underlined that CPW and IES, which were found to be the most useful
techniques, were used for the first time in the present work for the diagnostics of the
IMS rolling bearing dataset.

• The brief insight made into the prognosis domain, to quantify the suitability of sta-
tistical parameters to make predictions on the signal future trends, represents an
interesting starting point that may be worthy of being further developed.

5. Conclusions

A comparison among several signal processing techniques for the diagnostics of
the first rolling bearing dataset released by NASA IMS Center was carried out. It was
found that the combination of Cepstrum Pre-Whitening and Squared Envelope Spectrum
provides a very efficient diagnostic method. In particular, CPW turned out to be a powerful
tool to pre-whiten the signal, removing all masking components and noise, and therefore
highlighting the fault signatures within the SES. Moreover, it was found that also the
Improved Envelope Spectrum allows the harmonics of the fault frequencies of the defective
bearings to be properly identified. The IES, as a second-order cyclostationary technique, is
directly applied on the raw signal, thus providing a response from a different point of view,
deeply related to the true nature of the signal under test.

In the Authors’ opinion, the successful application of traditional as well as more
advanced and non-conventional vibration signal-based condition monitoring techniques
to analyze the first of the three datasets made available by NASA IMS Center can be
considered as a positive example of the efficacy of these mathematical tools to accomplish
the predictive maintenance of rotating machineries.

To conclude, the Authors’ point of view is that, despite the large and recent diffusion of
data-driven approaches, which represent promising methods particularly appreciated for
fault prognosis, vibration signal-based techniques still remain essential and irreplaceable in
light of the deep and detailed information they provide on the actual nature of the signal;
therefore, the best way to perform condition monitoring should be the combined use of
classical signal-based and new data-driven techniques.
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