The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP–TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.
Identification of a Quinone Derivative as a YAP/TEAD Activity Modulator from a Repurposing Library / Lauriola, A.; Uliassi, E.; Santucci, M.; Bolognesi, M. L.; Mor, M.; Scalvini, L.; Elisi, G. M.; Gozzi, G.; Tagliazucchi, L.; Marverti, G.; Ferrari, S.; Losi, L.; D'Arca, D.; Costi, M. P.. - In: PHARMACEUTICS. - ISSN 1999-4923. - 14:2(2022), pp. 391-N/A. [10.3390/pharmaceutics14020391]
Identification of a Quinone Derivative as a YAP/TEAD Activity Modulator from a Repurposing Library
Santucci M.;Elisi G. M.;Gozzi G.;Tagliazucchi L.;Marverti G.;Losi L.;D'Arca D.;Costi M. P.
2022
Abstract
The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP–TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.File | Dimensione | Formato | |
---|---|---|---|
pharmaceutics-14-00391-v2.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris