In this paper, we investigate the influence of Poole-Frenkel Effect (PFE) on the dynamic RON transients in C-doped p-GaN HEMTs. To this aim, we perform a characterization of the dynamic RON transients acquired during OFF-state stress (i.e., VGS,STR = 0 V < VT, VDS,STR = 25–125 V) and we interpret the results with the aid of numerical simulations. We find that dynamic RON transients at room temperature accelerate with VDS,STR1/2, which is signature of PFE, as further confirmed by the simultaneous decrease of the activation energy (EA) extracted from the Arrhenius plot of the dynamic RON transients at VDS,STR = 50 V and T = 30–110 °C. Results obtained by means of calibrated numerical simulations reproduce the exponential dependence of transients time constants (τ) on VDS,STR1/2 and consequent EA reduction only when including PFE enhancement of hole emission from dominant acceptor traps in the buffer related to C doping. This result is consistent with the model that considers hole emission from acceptor traps (rather than electron capture) as the mechanism underlying dynamic RON increase during OFF-state stress.
Experimental and numerical investigation of Poole-Frenkel effect on dynamic RON transients in C-doped p-GaN HEMTs / Zagni, Nicolò; Cioni, Marcello; Iucolano, Ferdinando; Moschetti, Maurizio; Verzellesi, Giovanni; Chini, Alessandro. - In: SEMICONDUCTOR SCIENCE AND TECHNOLOGY. - ISSN 0268-1242. - 37:2(2022), pp. 1-5. [10.1088/1361-6641/ac4113]
Experimental and numerical investigation of Poole-Frenkel effect on dynamic RON transients in C-doped p-GaN HEMTs
Zagni, Nicolò
;Cioni, Marcello;Verzellesi, Giovanni;Chini, Alessandro
2022
Abstract
In this paper, we investigate the influence of Poole-Frenkel Effect (PFE) on the dynamic RON transients in C-doped p-GaN HEMTs. To this aim, we perform a characterization of the dynamic RON transients acquired during OFF-state stress (i.e., VGS,STR = 0 V < VT, VDS,STR = 25–125 V) and we interpret the results with the aid of numerical simulations. We find that dynamic RON transients at room temperature accelerate with VDS,STR1/2, which is signature of PFE, as further confirmed by the simultaneous decrease of the activation energy (EA) extracted from the Arrhenius plot of the dynamic RON transients at VDS,STR = 50 V and T = 30–110 °C. Results obtained by means of calibrated numerical simulations reproduce the exponential dependence of transients time constants (τ) on VDS,STR1/2 and consequent EA reduction only when including PFE enhancement of hole emission from dominant acceptor traps in the buffer related to C doping. This result is consistent with the model that considers hole emission from acceptor traps (rather than electron capture) as the mechanism underlying dynamic RON increase during OFF-state stress.File | Dimensione | Formato | |
---|---|---|---|
J24_PP.pdf
Open Access dal 10/12/2022
Descrizione: Articolo Principale
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
Zagni_2022_Semicond._Sci._Technol._37_025006.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.32 MB
Formato
Adobe PDF
|
2.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris