This paper reports about the design of a bio-inspired compliant wrist, whose mobility (i.e. ulnar-radial deviation and flexion-extension) has been realized by employing two pairs of contact-aided Cross-Axis Flexural Pivots (CAFPs), actuated via remotely-placed servo-motors and tendon transmissions. The human wrist behaves differently when deflecting in clockwise or anticlockwise direction, both in terms of maximum angular deflection and passive stiffness. The device proposed hereafter aims at mimicking such natural asymmetry, while withstanding unexpected external loads. In order to fulfill these requirements, two contacts are included: (i) a pure rolling contact (named passive contact), achieved via a cam mechanism guiding the CAFP deflection and ensuring the wrist resistance to compressive loads; (ii) a purposely shaped contact pair (named active contact), acting on one beam of the CAFP so as to increase its stiffness. The design procedures and tools specifically developed for the wrist optimization are described. In the first step, a CAFP shape optimization is performed, followed by the synthesis of the active contact pair. In the second step, the centrodes are computed and then used to generate the passive contact profiles. At last, the third step focuses on the definition of the tendons routing. To prove the validity of the numerical models, a physical prototype of the wrist is produced and tested. Direct comparisons between simulations and experiments confirm the efficacy of the proposed design method.

Design of a bio-inspired contact-aided compliant wrist / Bilancia, P.; Baggetta, M.; Berselli, G.; Bruzzone, L.; Fanghella, P.. - In: ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING. - ISSN 0736-5845. - 67:(2021), pp. 102028-102028. [10.1016/j.rcim.2020.102028]

Design of a bio-inspired contact-aided compliant wrist

Bilancia P.
;
Berselli G.;
2021

Abstract

This paper reports about the design of a bio-inspired compliant wrist, whose mobility (i.e. ulnar-radial deviation and flexion-extension) has been realized by employing two pairs of contact-aided Cross-Axis Flexural Pivots (CAFPs), actuated via remotely-placed servo-motors and tendon transmissions. The human wrist behaves differently when deflecting in clockwise or anticlockwise direction, both in terms of maximum angular deflection and passive stiffness. The device proposed hereafter aims at mimicking such natural asymmetry, while withstanding unexpected external loads. In order to fulfill these requirements, two contacts are included: (i) a pure rolling contact (named passive contact), achieved via a cam mechanism guiding the CAFP deflection and ensuring the wrist resistance to compressive loads; (ii) a purposely shaped contact pair (named active contact), acting on one beam of the CAFP so as to increase its stiffness. The design procedures and tools specifically developed for the wrist optimization are described. In the first step, a CAFP shape optimization is performed, followed by the synthesis of the active contact pair. In the second step, the centrodes are computed and then used to generate the passive contact profiles. At last, the third step focuses on the definition of the tendons routing. To prove the validity of the numerical models, a physical prototype of the wrist is produced and tested. Direct comparisons between simulations and experiments confirm the efficacy of the proposed design method.
2021
67
102028
102028
Design of a bio-inspired contact-aided compliant wrist / Bilancia, P.; Baggetta, M.; Berselli, G.; Bruzzone, L.; Fanghella, P.. - In: ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING. - ISSN 0736-5845. - 67:(2021), pp. 102028-102028. [10.1016/j.rcim.2020.102028]
Bilancia, P.; Baggetta, M.; Berselli, G.; Bruzzone, L.; Fanghella, P.
File in questo prodotto:
File Dimensione Formato  
RCIM_PolsoCafp.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 6.67 MB
Formato Adobe PDF
6.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1252141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 24
social impact