Emission modelling is still a timely topic in the engine research community. Soot emission reduction has gained its spotlight among the pollutants-related issues mainly due to the renewed interest in Gasoline Direct Injection. The conjunction of experimental measurements and numerical investigations provides an effective tool to cope with the constant evolution of the emission regulations. Thus, numerical models must be validated over a wide range of engine operating points and fuels. To this aim, the Sectional Method was applied to investigate Particulate Matter and Particle Number produced during combustion in a premixed spark ignition engine using 3D-CFD. Soot-related quantities were investigated for different values of equivalence ratio (from 1.0 up to 1.5) as well as for different fuels. Three different fuel types were examined: a commercial nonoxygenated American gasoline (TIER-2), a commercial Chinese gasoline (CHINA-6) with ethanol 10 %vol and pure Ethanol (E100). A detailed chemistry-based tabulated approach was exploited to compute a dedicated soot library, for each of the analyzed fuels, by means of 0D chemical kinetic simulations using a constant pressure reactor approach. Numerical results were compared to a database of experimental measurements collected from literature. The sooting tendency threshold dependency on equivalence ratio was also investigated and the results showed that the ethanol is the less sooting among the examined fuels, while the non-oxygenated gasoline exhibited the highest soot mass and Particle Number. This paper provides a CFD-based benchmark for soot mass and Particle Number for three fuel types with largely different chemical nature.

Application of the Sectional Method to Investigate Particle Number and Soot Mass in Ethanol and Gasoline Fueled Premixed Spark Ignition Engines / Pessina, V.; Del Pecchia, M.; Breda, S.; Dalseno, L.; Borghi, M.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - 197:(2020), p. 06009. (Intervento presentato al convegno 75th National ATI Congress - #7 Clean Energy for all, ATI 2020 tenutosi a ita nel 2020) [10.1051/e3sconf/202019706009].

Application of the Sectional Method to Investigate Particle Number and Soot Mass in Ethanol and Gasoline Fueled Premixed Spark Ignition Engines

Pessina V.;Del Pecchia M.;Breda S.;Borghi M.
2020

Abstract

Emission modelling is still a timely topic in the engine research community. Soot emission reduction has gained its spotlight among the pollutants-related issues mainly due to the renewed interest in Gasoline Direct Injection. The conjunction of experimental measurements and numerical investigations provides an effective tool to cope with the constant evolution of the emission regulations. Thus, numerical models must be validated over a wide range of engine operating points and fuels. To this aim, the Sectional Method was applied to investigate Particulate Matter and Particle Number produced during combustion in a premixed spark ignition engine using 3D-CFD. Soot-related quantities were investigated for different values of equivalence ratio (from 1.0 up to 1.5) as well as for different fuels. Three different fuel types were examined: a commercial nonoxygenated American gasoline (TIER-2), a commercial Chinese gasoline (CHINA-6) with ethanol 10 %vol and pure Ethanol (E100). A detailed chemistry-based tabulated approach was exploited to compute a dedicated soot library, for each of the analyzed fuels, by means of 0D chemical kinetic simulations using a constant pressure reactor approach. Numerical results were compared to a database of experimental measurements collected from literature. The sooting tendency threshold dependency on equivalence ratio was also investigated and the results showed that the ethanol is the less sooting among the examined fuels, while the non-oxygenated gasoline exhibited the highest soot mass and Particle Number. This paper provides a CFD-based benchmark for soot mass and Particle Number for three fuel types with largely different chemical nature.
2020
75th National ATI Congress - #7 Clean Energy for all, ATI 2020
ita
2020
197
06009
Pessina, V.; Del Pecchia, M.; Breda, S.; Dalseno, L.; Borghi, M.
Application of the Sectional Method to Investigate Particle Number and Soot Mass in Ethanol and Gasoline Fueled Premixed Spark Ignition Engines / Pessina, V.; Del Pecchia, M.; Breda, S.; Dalseno, L.; Borghi, M.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - 197:(2020), p. 06009. (Intervento presentato al convegno 75th National ATI Congress - #7 Clean Energy for all, ATI 2020 tenutosi a ita nel 2020) [10.1051/e3sconf/202019706009].
File in questo prodotto:
File Dimensione Formato  
e3sconf_ati2020_06009.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1248359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact