In recent years, a plethora of novel semiconductor devices have started emerging as worthy heirs of Silicon-based transistors giving rise to the 'post-Moore' era. In fact, while traditional electronics was mostly based on Si devices, --- from logic to memory, to high frequency/power and sensing applications --- this paradigm is slowly but progressively changing thanks to the developments in different fields ranging from physics and semiconductor materials, to processing techniques and computing architectures. In this hectic new scenario, the potential limiting factors to the performance and reliability of new device concepts need to be well-understood at a very early stage of development before even considering a new technology as a replacement of the existing ones. In this sense, simulations and physics-based modeling represent critical tools to understand and thus engineer new technologies to the requirements of the 21\textsuperscript{st} electronics. In this work, state-of-the-art simulation and compact modeling tools are exploited to analyze the performance and reliability limits of emerging technologies. Specifically, this work addresses four application scenarios and and the candidate technologies to provide enhanced performance compared to Si-based counterparts. These are: \emph{i)} III-V MOSFETs for logic/digital circuits; \emph{ii)} resistive-RAMs and ferroelectric-FETs for non-volatile memory and in-memory computing; \emph{iii)} GaN-based high-speed transistors for power applications; and \emph{iv)} negative capacitance transistors for biosensing.
Negli ultimi anni si è assitito emergere una pleteora di dispositivi a semiconduttore innovativi come degni eredi dei transistor basati su Silicio, dando via alla cosidetta era 'post-Moore'. Infatti, nonostante l'elettronica tradizionale sia basata su dispositivi in Silicio, --- dai circuiti logici alle memorie, dalle applicazioni ad alta frequenza/potenza alla sensoristica --- questo paradigma sta lentamente ma progressivamente mutando grazie agli sviluppi provenienti da diversi campi, dalla fisica e dai materiali a semiconduttore sino alle tecniche di fabbricazione e le architetture dei calcolatori. In questo nuovo, frenetico scenario, i potenziali fattori limite delle performance e dell'affidabilità di nuovi dispositivi devono essere ben compresi in una fase relativamente preliminare dello sviluppo affinché essi possano essere effettivamente presi in considerazione come sostituti della tecnologia preesistente. In questo senso, la simulazione e la modellizzazione fisica rappresentano degli strumenti fondamentali per la comprensione e dunque la progettazione di nuove tecnologie per soddisfare i requisiti dell'elettronica del XXI secolo. In questo lavoro vengono utilizzati metodi di simulazione numerica e di modellizzazione compatta allo stato dell'arte per analizzare i limiti delle performance e dell'affidabilità di differenti tecnologie emergenti. Nello specifico, questa tesi affronta quattro differenti scenari applicativi e le tecnologie corrispondenti candidate come possibili sostituti delle controparti in Silicio. Queste sono: \emph{i)} III-V MOSFETs per circuiti logici/digitali; \emph{ii)} resitive-RAMs e ferroelectric-FETs per memorie non-volatili e elaborazione in-memory; \emph{iii)} transistor ad alta velocità basati su GaN per applicazioni di potenza; e \emph{iv)} transistor a capacità negativa per biosensori.
Metodi di Simulazione e Modellizazione per Predirre le Performance e l'Affidabilità dell'Elettronica del XXI Secolo / Nicolo' Zagni , 2021 Mar 23. 33. ciclo, Anno Accademico 2019/2020.
Metodi di Simulazione e Modellizazione per Predirre le Performance e l'Affidabilità dell'Elettronica del XXI Secolo
ZAGNI, NICOLO'
2021
Abstract
In recent years, a plethora of novel semiconductor devices have started emerging as worthy heirs of Silicon-based transistors giving rise to the 'post-Moore' era. In fact, while traditional electronics was mostly based on Si devices, --- from logic to memory, to high frequency/power and sensing applications --- this paradigm is slowly but progressively changing thanks to the developments in different fields ranging from physics and semiconductor materials, to processing techniques and computing architectures. In this hectic new scenario, the potential limiting factors to the performance and reliability of new device concepts need to be well-understood at a very early stage of development before even considering a new technology as a replacement of the existing ones. In this sense, simulations and physics-based modeling represent critical tools to understand and thus engineer new technologies to the requirements of the 21\textsuperscript{st} electronics. In this work, state-of-the-art simulation and compact modeling tools are exploited to analyze the performance and reliability limits of emerging technologies. Specifically, this work addresses four application scenarios and and the candidate technologies to provide enhanced performance compared to Si-based counterparts. These are: \emph{i)} III-V MOSFETs for logic/digital circuits; \emph{ii)} resistive-RAMs and ferroelectric-FETs for non-volatile memory and in-memory computing; \emph{iii)} GaN-based high-speed transistors for power applications; and \emph{iv)} negative capacitance transistors for biosensing.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Dottorato_N_Zagni_Finale.pdf
Open access
Descrizione: Tesi_definitiva_Zagni_Nicolo
Tipologia:
Tesi di dottorato
Dimensione
4.31 MB
Formato
Adobe PDF
|
4.31 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris