In the present paper, 1D and 3D CFD models of the Darmstadt research engine undergo a preliminary validation against the available experimental dataset at motored condition. The Darmstadt engine is a single-cylinder optical research unit and the chosen operating point is characterized by a revving speed equal to 800 rpm with intake temperature and pressure of 24 °C and 0.95 bar, respectively. Experimental data are available from the TU Darmstadt engine research group. Several aspects of the engine are analyzed, such as crevice modeling, blow-by, heat transfer and compression ratio, with the aim to minimize numerical uncertainties. On the one hand, a GT-Power model of the engine is used to investigate the impact of blow-by and crevices modeling during compression and expansion strokes. Moreover, it provides boundary conditions for the following 3D CFD simulations. On the other hand, the latter, carried out in a RANS framework with both highand low-Reynolds wall treatments, allow a deeper investigation of the boundary layer phenomena and, thus, of the gas-to-wall heat transfer. A detailed modeling of the crevice, along with an ad hoc tuning of both blow-by and heat fluxes lead to a remarkable improvement of the results. However, in order to adequately match the experimental mean in-cylinder pressure, a slight modification of the compression ratio from the nominal value is accounted for, based on the uncertainty which usually characterizes such geometrical parameter. The present preliminary study aims at providing reliable numerical setups for 1D and 3D models to be adopted in future detailed investigations on the Darmstadt research engine.
A Preliminary 1D-3D Analysis of the Darmstadt Research Engine under Motored Condition / Iacovano, C.; Berni, F.; Barbato, A.; Fontanesi, S.. - In: E3S WEB OF CONFERENCES. - ISSN 2267-1242. - 197:(2020), pp. 1-12. (Intervento presentato al convegno 75th National ATI Congress - #7 Clean Energy for all, ATI 2020 tenutosi a ita nel 2020) [10.1051/e3sconf/202019706006].
A Preliminary 1D-3D Analysis of the Darmstadt Research Engine under Motored Condition
Iacovano C.;Berni F.;Barbato A.;Fontanesi S.
2020
Abstract
In the present paper, 1D and 3D CFD models of the Darmstadt research engine undergo a preliminary validation against the available experimental dataset at motored condition. The Darmstadt engine is a single-cylinder optical research unit and the chosen operating point is characterized by a revving speed equal to 800 rpm with intake temperature and pressure of 24 °C and 0.95 bar, respectively. Experimental data are available from the TU Darmstadt engine research group. Several aspects of the engine are analyzed, such as crevice modeling, blow-by, heat transfer and compression ratio, with the aim to minimize numerical uncertainties. On the one hand, a GT-Power model of the engine is used to investigate the impact of blow-by and crevices modeling during compression and expansion strokes. Moreover, it provides boundary conditions for the following 3D CFD simulations. On the other hand, the latter, carried out in a RANS framework with both highand low-Reynolds wall treatments, allow a deeper investigation of the boundary layer phenomena and, thus, of the gas-to-wall heat transfer. A detailed modeling of the crevice, along with an ad hoc tuning of both blow-by and heat fluxes lead to a remarkable improvement of the results. However, in order to adequately match the experimental mean in-cylinder pressure, a slight modification of the compression ratio from the nominal value is accounted for, based on the uncertainty which usually characterizes such geometrical parameter. The present preliminary study aims at providing reliable numerical setups for 1D and 3D models to be adopted in future detailed investigations on the Darmstadt research engine.File | Dimensione | Formato | |
---|---|---|---|
E3SCONF_ATI2020_A preliminary 1D-3D analysis of the Darmstadt Research Engine under motored condition.pdf
Open access
Descrizione: Articolo definitivo
Tipologia:
Versione pubblicata dall'editore
Dimensione
4.13 MB
Formato
Adobe PDF
|
4.13 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris