The accurate extraction and the reliable, repeatable reduction of graphene - metal contact resistance (R$_{C}$) are still open issues in graphene technology. Here, we demonstrate the importance of following clear protocols when extracting R$_{C}$ using the transfer length method (TLM). We use the example of back-gated graphene TLM structures with nickel contacts, a complementary metal oxide semiconductor compatible metal. The accurate extraction of R$_{C}$ is significantly affected by generally observable Dirac voltage shifts with increasing channel lengths in ambient conditions. R$_{C}$ is generally a function of the carrier density in graphene. Hence, the position of the Fermi level and the gate voltage impact the extraction of R$_{C}$. Measurements in high vacuum, on the other hand, result in dependable extraction of R$_{C}$ as a function of gate voltage owing to minimal spread in Dirac voltages. We further assess the accurate measurement and extraction of important parameters like contact-end resistance, transfer length, sheet resistance of graphene under the metal contact and specific contact resistivity as a function of the back-gate voltage. The presented methodology has also been applied to devices with gold and copper contacts, with similar conclusions.
Dependable Contact Related Parameter Extraction in Graphene–Metal Junctions / Gahoi, Amit; Kataria, Satender; Driussi, Francesco; Venica, Stefano; Pandey, Himadri; Esseni, David; Selmi, Luca; Lemme, Max C.. - In: ADVANCED ELECTRONIC MATERIALS. - ISSN 2199-160X. - 6:10(2020), pp. 1-9. [10.1002/aelm.202000386]
Dependable Contact Related Parameter Extraction in Graphene–Metal Junctions
Luca Selmi;
2020
Abstract
The accurate extraction and the reliable, repeatable reduction of graphene - metal contact resistance (R$_{C}$) are still open issues in graphene technology. Here, we demonstrate the importance of following clear protocols when extracting R$_{C}$ using the transfer length method (TLM). We use the example of back-gated graphene TLM structures with nickel contacts, a complementary metal oxide semiconductor compatible metal. The accurate extraction of R$_{C}$ is significantly affected by generally observable Dirac voltage shifts with increasing channel lengths in ambient conditions. R$_{C}$ is generally a function of the carrier density in graphene. Hence, the position of the Fermi level and the gate voltage impact the extraction of R$_{C}$. Measurements in high vacuum, on the other hand, result in dependable extraction of R$_{C}$ as a function of gate voltage owing to minimal spread in Dirac voltages. We further assess the accurate measurement and extraction of important parameters like contact-end resistance, transfer length, sheet resistance of graphene under the metal contact and specific contact resistivity as a function of the back-gate voltage. The presented methodology has also been applied to devices with gold and copper contacts, with similar conclusions.File | Dimensione | Formato | |
---|---|---|---|
Adv Elect Materials - 2020 - Gahoi - Dependable Contact Related Parameter Extraction in Graphene Metal Junctions.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] creative-commons
Dimensione
3.26 MB
Formato
Adobe PDF
|
3.26 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris