In this Chapter, the state-of-the-art approaches for the classification of multi-way data is presented and discussed. The theoretical basis and applicative guidelines for multilinear (or multi-way) Partial Least Squares Discriminant Analysis (NPLS-DA) and Multi-way Soft Independent Modelling of Class Analogy (NSIMCA) are detailed. Furthermore, two-dimensional linear discriminant analysis (2DLDA) and a proposal for truly multilinear discriminant analysis are illustrated. The truly multi-way methods are compared to unfolding and feature extraction followed by bilinear classification. Practical hints are depicted through discussion of a case of study.

Multi Way Classification / Cocchi, Marina; Li Vigni, Mario; Durante, Caterina. - 3:3.34(2020), pp. 701-721. [10.1016/B978-0-12-409547-2.14590-1]

Multi Way Classification

Cocchi, Marina
;
Li Vigni, Mario;Durante, Caterina
2020

Abstract

In this Chapter, the state-of-the-art approaches for the classification of multi-way data is presented and discussed. The theoretical basis and applicative guidelines for multilinear (or multi-way) Partial Least Squares Discriminant Analysis (NPLS-DA) and Multi-way Soft Independent Modelling of Class Analogy (NSIMCA) are detailed. Furthermore, two-dimensional linear discriminant analysis (2DLDA) and a proposal for truly multilinear discriminant analysis are illustrated. The truly multi-way methods are compared to unfolding and feature extraction followed by bilinear classification. Practical hints are depicted through discussion of a case of study.
2020
Comprehensive Chemometrics 2nd edition
Steven Brown, Romà Tauler, Beata Walczak
9780444641663
Elsevier
PAESI BASSI
Multi Way Classification / Cocchi, Marina; Li Vigni, Mario; Durante, Caterina. - 3:3.34(2020), pp. 701-721. [10.1016/B978-0-12-409547-2.14590-1]
Cocchi, Marina; Li Vigni, Mario; Durante, Caterina
File in questo prodotto:
File Dimensione Formato  
MultiwayClassification3.34.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1203779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact