Modern production systems are becoming more and more complex to comply with diversified market needs, flexible production, and competitiveness. Despite technological progress, the presence of human operators is still fundamental in production plants, since they have the important role of supervising and monitoring processes, by interacting with such complex machines. The complexity of machines implies an increased complexity of human-machine interfaces (HMIs), which are the main point of contact between the operator and the machine. Thus, HMIs cannot be considered anymore an accessory to the machine and their improvement has become an important part of the design of the whole machines, to enable a nonstressful interaction and make them easy to also use less skilled operators. In this article, we present a general framework for the design of HMIs that adapt to the skills and capabilities of the operator, with the ultimate aim of enabling a smooth and efficient interaction and improving user's situation awareness. Adaptation is achieved by considering three different levels: Perception (i.e., how information is presented), cognition (i.e., what information is presented), and interaction (i.e., how interaction is enabled). For each level, general guidelines for adaptation are provided, thus defining a meta-HMI independent of the application. Finally, some examples of how the proposed adaptation patterns can be applied to the case of procedural and extraordinary maintenance tasks are presented. Note to Practitioners-This article was motivated by the problem of facilitating the interaction of human operators with human-machine interfaces (HMIs) of complex industrial systems. Standard industrial HMIs are static and do not consider the user's characteristics. As a consequence, least-skilled operators are prevented from their use and/or have poor performance. In this article, we suggest a novel methodology to the design of adaptive industrial HMIs that adapt to the skills and capabilities of operators and compensate their limitations (e.g., due to age or inexperience). In particular, we propose a methodological framework that consists of general rules to accommodate the user's characteristics. Adaptation is achieved at three different levels: Perception (i.e., how information is presented), cognition (i.e., what information is presented), and interaction (i.e., how interaction is enabled). The presented rules are independent of the target application. Nevertheless, we establish a relationship between such design rules and user's impairments and capabilities and kind of working tasks. Hence, designers of HMIs are called to instantiate them considering the specific requirements and characteristics of the users and the working tasks of the application at hand.

A General Methodology for Adapting Industrial HMIs to Human Operators / Villani, Valeria; Sabattini, Lorenzo; Loch, Frieder; Vogel-Heuser, Birgit; Fantuzzi, Cesare. - In: IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. - ISSN 1545-5955. - 18:1(2019), pp. 164-175. [10.1109/TASE.2019.2941541]

A General Methodology for Adapting Industrial HMIs to Human Operators

Villani, Valeria
;
Sabattini, Lorenzo;Fantuzzi, Cesare
2019

Abstract

Modern production systems are becoming more and more complex to comply with diversified market needs, flexible production, and competitiveness. Despite technological progress, the presence of human operators is still fundamental in production plants, since they have the important role of supervising and monitoring processes, by interacting with such complex machines. The complexity of machines implies an increased complexity of human-machine interfaces (HMIs), which are the main point of contact between the operator and the machine. Thus, HMIs cannot be considered anymore an accessory to the machine and their improvement has become an important part of the design of the whole machines, to enable a nonstressful interaction and make them easy to also use less skilled operators. In this article, we present a general framework for the design of HMIs that adapt to the skills and capabilities of the operator, with the ultimate aim of enabling a smooth and efficient interaction and improving user's situation awareness. Adaptation is achieved by considering three different levels: Perception (i.e., how information is presented), cognition (i.e., what information is presented), and interaction (i.e., how interaction is enabled). For each level, general guidelines for adaptation are provided, thus defining a meta-HMI independent of the application. Finally, some examples of how the proposed adaptation patterns can be applied to the case of procedural and extraordinary maintenance tasks are presented. Note to Practitioners-This article was motivated by the problem of facilitating the interaction of human operators with human-machine interfaces (HMIs) of complex industrial systems. Standard industrial HMIs are static and do not consider the user's characteristics. As a consequence, least-skilled operators are prevented from their use and/or have poor performance. In this article, we suggest a novel methodology to the design of adaptive industrial HMIs that adapt to the skills and capabilities of operators and compensate their limitations (e.g., due to age or inexperience). In particular, we propose a methodological framework that consists of general rules to accommodate the user's characteristics. Adaptation is achieved at three different levels: Perception (i.e., how information is presented), cognition (i.e., what information is presented), and interaction (i.e., how interaction is enabled). The presented rules are independent of the target application. Nevertheless, we establish a relationship between such design rules and user's impairments and capabilities and kind of working tasks. Hence, designers of HMIs are called to instantiate them considering the specific requirements and characteristics of the users and the working tasks of the application at hand.
2019
18
1
164
175
A General Methodology for Adapting Industrial HMIs to Human Operators / Villani, Valeria; Sabattini, Lorenzo; Loch, Frieder; Vogel-Heuser, Birgit; Fantuzzi, Cesare. - In: IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING. - ISSN 1545-5955. - 18:1(2019), pp. 164-175. [10.1109/TASE.2019.2941541]
Villani, Valeria; Sabattini, Lorenzo; Loch, Frieder; Vogel-Heuser, Birgit; Fantuzzi, Cesare
File in questo prodotto:
File Dimensione Formato  
VOR_A_General_Methodology_for_Adapting_Industrial_HMIs_to_Human_Operators.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1_A_General_Methodology.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 5.59 MB
Formato Adobe PDF
5.59 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1185841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact