A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed singlecylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratifiedcharge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken. A two-level analysis is carried out: the influence of global parameters is assessed at first; second, local details in the ignition region are analyzed. A comparison of conditions at combustion onset is carried out and case-specific leading factors for combustion CCV are identified and ranked. Finally, comparative simulations are presented using a simpler flame deposition ignition model: the simulation flaws are evident due to modeling assumptions in the flame/flow interaction at ignition. The relevance of this study is the knowledge extension of turbulence-driven phenomena in ICEs allowed by advanced CFD (Computational Fluid Dynamics) simulations. The application to different engine types proves the soundness of the used models and it confirms that CCV is based on enginespecific factors. Simulations show how CCV originates from the interplay of small- and large-scale factors in Engine 1, due to the lack of coherent flows, whereas in Engine 2 the dominant CCV promoters are local air-to-fuel ratio (AFR) and flow velocity at ignition. This confirms the absence of a generally valid ranking, and it demonstrates the use of LES as a development and designorienting tool for next-generation engines.
Understanding the origin of cycle-to-cycle variation using large-eddy simulation: Similarities and differences between a homogeneous low-revving speed research engine and a production DI turbocharged engine / D'Adamo, Alessandro; Breda, Sebastiano; Berni, Fabio; Fontanesi, Stefano. - In: SAE INTERNATIONAL JOURNAL OF ENGINES. - ISSN 1946-3936. - 12:1(2018), pp. 1-22. [10.4271/03-12-01-0007]
Understanding the origin of cycle-to-cycle variation using large-eddy simulation: Similarities and differences between a homogeneous low-revving speed research engine and a production DI turbocharged engine
D'Adamo, Alessandro;Breda, Sebastiano;Berni, Fabio;Fontanesi, Stefano
2018
Abstract
A numerical study using large-eddy simulations (LES) to reproduce and understand sources of cycle-to-cycle variation (CCV) in spark-initiated internal combustion engines (ICEs) is presented. Two relevantly different spark-ignition (SI) units, that is, a homogeneous-charge slow-speed singlecylinder research unit (the transparent combustion chamber (TCC)-III, Engine 1) and a stratifiedcharge high-revving speed gasoline direct injection (GDI) (Engine 2) one, are analyzed in fired operations. Multiple-cycle simulations are carried out for both engines and LES results well reproduce the experimentally measured combustion CCV. A correlation study is carried out, emphasizing the decisive influence of the early flame period variability (1% of mass fraction burnt (MFB1)) on the entire combustion event in both ICEs. The focus is moved onto the early flame characteristics, and the crucial task to determine the dominant causes of its variability (if any) is undertaken. A two-level analysis is carried out: the influence of global parameters is assessed at first; second, local details in the ignition region are analyzed. A comparison of conditions at combustion onset is carried out and case-specific leading factors for combustion CCV are identified and ranked. Finally, comparative simulations are presented using a simpler flame deposition ignition model: the simulation flaws are evident due to modeling assumptions in the flame/flow interaction at ignition. The relevance of this study is the knowledge extension of turbulence-driven phenomena in ICEs allowed by advanced CFD (Computational Fluid Dynamics) simulations. The application to different engine types proves the soundness of the used models and it confirms that CCV is based on enginespecific factors. Simulations show how CCV originates from the interplay of small- and large-scale factors in Engine 1, due to the lack of coherent flows, whereas in Engine 2 the dominant CCV promoters are local air-to-fuel ratio (AFR) and flow velocity at ignition. This confirms the absence of a generally valid ranking, and it demonstrates the use of LES as a development and designorienting tool for next-generation engines.File | Dimensione | Formato | |
---|---|---|---|
SAE_JENG_2018_03-12-01-0007.pdf
Accesso riservato
Descrizione: Articolo completo
Tipologia:
Versione pubblicata dall'editore
Dimensione
8.62 MB
Formato
Adobe PDF
|
8.62 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
REV R1-Understanding the Origin of CCV using LES.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris