Connectivity maintenance is an essential task in multi-robot systems and it has received a considerable attention during the last years. However, a connected system can be broken into two or more subsets simply if a single robot fails. Then, a more robust communication can be achieved if the network connectivity is guaranteed in the case of one-robot failures. The resulting network is called biconnected. In [1] we presented a criterion for biconnectivity check, which basically determines a lower bound on the third-smallest eigenvalue of the Laplacian matrix. In this paper we introduce a decentralized gradient-based protocol to increase the value of the third-smallest eigenvalue of the Laplacian matrix, when the biconnectivity check fails. We also introduce a decentralized algorithm to estimate the eigenvectors of the Laplacian matrix, which are used for defining the gradient. Simulations show the effectiveness of the theoretical findings.

Enforcing biconnectivity in multi-robot systems / Zareh Eshghdoust, Mehran; Sabattini, Lorenzo; Secchi, Cristian. - (2016), pp. 1800-1805. (Intervento presentato al convegno 55th IEEE Conference on Decision and Control, CDC 2016 tenutosi a ARIA Resort and Casino, usa nel 2016) [10.1109/CDC.2016.7798526].

Enforcing biconnectivity in multi-robot systems

Zareh Eshghdoust, Mehran;Sabattini, Lorenzo;Secchi, Cristian
2016

Abstract

Connectivity maintenance is an essential task in multi-robot systems and it has received a considerable attention during the last years. However, a connected system can be broken into two or more subsets simply if a single robot fails. Then, a more robust communication can be achieved if the network connectivity is guaranteed in the case of one-robot failures. The resulting network is called biconnected. In [1] we presented a criterion for biconnectivity check, which basically determines a lower bound on the third-smallest eigenvalue of the Laplacian matrix. In this paper we introduce a decentralized gradient-based protocol to increase the value of the third-smallest eigenvalue of the Laplacian matrix, when the biconnectivity check fails. We also introduce a decentralized algorithm to estimate the eigenvectors of the Laplacian matrix, which are used for defining the gradient. Simulations show the effectiveness of the theoretical findings.
2016
55th IEEE Conference on Decision and Control, CDC 2016
ARIA Resort and Casino, usa
2016
1800
1805
Zareh Eshghdoust, Mehran; Sabattini, Lorenzo; Secchi, Cristian
Enforcing biconnectivity in multi-robot systems / Zareh Eshghdoust, Mehran; Sabattini, Lorenzo; Secchi, Cristian. - (2016), pp. 1800-1805. (Intervento presentato al convegno 55th IEEE Conference on Decision and Control, CDC 2016 tenutosi a ARIA Resort and Casino, usa nel 2016) [10.1109/CDC.2016.7798526].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1156962
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 9
social impact