The paper proposes a decentralized state estimation method for the control of network systems, where a cooperative objective has to be achieved. The nodes of the network are partitioned into independent nodes, providing the control inputs, and dependent nodes, controlled by local interaction laws. The proposed state estimation algorithm allows the independent nodes to estimate the state of the dependent nodes in a completely decentralized way. To do that, it is necessary for each independent node of the network to estimate the control input components computed by the other independent nodes, without requiring communication among the independent nodes. The decentralized state estimator, including an input estimator, is developed and the convergence properties are studied. Simulation results show the effectiveness of the proposed approach.
Decentralized state estimation for the control of network systems / Boem, Francesca; Sabattini, Lorenzo; Secchi, Cristian. - In: JOURNAL OF THE FRANKLIN INSTITUTE. - ISSN 0016-0032. - 356:2(2019), pp. 860-882. [10.1016/j.jfranklin.2017.11.028]
Decentralized state estimation for the control of network systems
Sabattini, Lorenzo;Secchi, Cristian
2019
Abstract
The paper proposes a decentralized state estimation method for the control of network systems, where a cooperative objective has to be achieved. The nodes of the network are partitioned into independent nodes, providing the control inputs, and dependent nodes, controlled by local interaction laws. The proposed state estimation algorithm allows the independent nodes to estimate the state of the dependent nodes in a completely decentralized way. To do that, it is necessary for each independent node of the network to estimate the control input components computed by the other independent nodes, without requiring communication among the independent nodes. The decentralized state estimator, including an input estimator, is developed and the convergence properties are studied. Simulation results show the effectiveness of the proposed approach.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris