This study presents a practical and promising approach to profile the headspace aroma attributes of Philippine civet coffee using electronic nose (E-nose) and gas chromatography mass spectrometry (GCMS). Chemometric pattern method was applied to enhance the discrimination of civet coffee against its control coffee beans (not eaten by civet animal). E-nose analysis revealed that aroma characteristic is one of the most important quality indicators of civet coffee. The result was supported by GCMS analysis. The chromatographic fingerprints indicated that civet coffee differed with their control beans in terms of composition and concentration of individual volatile constituents. Chemometric discrimination of E-nose and GCMS data demonstrated a clearly separated civet from their control coffees indicating that cultivar and geographic origins dictate the aroma and volatiles variations in coffee.
Chemometric discrimination of Philippine Civet Coffee using Electronic Nose and Gas Chromatography Mass Spectrometry
Chemometric discrimination of Philippine Civet Coffee using Electronic Nose and Gas Chromatography Mass Spectrometry / Ongo, Emelda; Falasconi, Matteo; Sberveglieri, Giorgio; Antonelli, Andrea; Montevecchi, Giuseppe; Sberveglieri, Veronica; Concina, Isabella; Sevilla III, Fortunato. - In: PROCEDIA ENGINEERING. - ISSN 1877-7058. - ELETTRONICO. - 47:(2012), pp. 977-980. (Intervento presentato al convegno 26th European Conference on Solid-State Transducers, EUROSENSOR 2012 tenutosi a Krakóv, Poland nel 9-12 September 2012) [10.1016/j.proeng.2012.09.310].
Chemometric discrimination of Philippine Civet Coffee using Electronic Nose and Gas Chromatography Mass Spectrometry
ANTONELLI, Andrea;MONTEVECCHI, Giuseppe;SBERVEGLIERI, VERONICA;
2012
Abstract
Chemometric discrimination of Philippine Civet Coffee using Electronic Nose and Gas Chromatography Mass SpectrometryPubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris