Bacterial resistance represents a worldwide emergency threatening the efficacy of all available antibiotics. Among the several resistance mechanisms developed by bacteria, beta-lactamases enzymes (BLs), able to inactivate most beta-lactam core antibiotics, represent a key target to block prolonging antibiotics half-life. Several approaches aimed at inhibiting BLs have been so far undertaken, mainly involving beta-lactam like or covalent inhibitors. Applying a structure based de novo design approach, we recently discovered a novel, non-covalent and competitive inhibitor of AmpC beta lactamases: it has a Ki of 1 µM, a ligand efficiency of 0.38 kcal ∙ mol–1 and lead-like physical properties. Moreover, it reverts resistance to ceftazidime in bacterial pathogens expressing AmpC and does not up-regulate beta-lactamase expression in cell culture. Its features make it a good candidate for chemical optimization: starting from its crystallographic complex with AmpC, eleven analogues were designed to complement additional AmpC sites, then synthesized and tested against clinical resistant pathogens. While the new inhibitors maintain similar in vitro activity as the starting lead, some of them exert a higher potency in in vivo tests, showing improved synergic potency with ceftazidime in resistant clinically isolated strains.

Design, synthesis and biological evaluation of non-covalent AmpC Beta-Lactamases inhibitors / Genovese, Filippo; Lazzari, Sandra; Venturi, Ettore; Costantino, Luca; Blazquez, Jesus; Ibacache Quiroga, · Claudia; Costi, Maria Paola; Tondi, Donatella. - In: MEDICINAL CHEMISTRY RESEARCH. - ISSN 1054-2523. - (2017), pp. 975-986. [10.1007/s00044-017-1809-x]

Design, synthesis and biological evaluation of non-covalent AmpC Beta-Lactamases inhibitors

GENOVESE, Filippo;LAZZARI, Sandra;COSTANTINO, Luca;COSTI, Maria Paola;TONDI, Donatella
Investigation
2017

Abstract

Bacterial resistance represents a worldwide emergency threatening the efficacy of all available antibiotics. Among the several resistance mechanisms developed by bacteria, beta-lactamases enzymes (BLs), able to inactivate most beta-lactam core antibiotics, represent a key target to block prolonging antibiotics half-life. Several approaches aimed at inhibiting BLs have been so far undertaken, mainly involving beta-lactam like or covalent inhibitors. Applying a structure based de novo design approach, we recently discovered a novel, non-covalent and competitive inhibitor of AmpC beta lactamases: it has a Ki of 1 µM, a ligand efficiency of 0.38 kcal ∙ mol–1 and lead-like physical properties. Moreover, it reverts resistance to ceftazidime in bacterial pathogens expressing AmpC and does not up-regulate beta-lactamase expression in cell culture. Its features make it a good candidate for chemical optimization: starting from its crystallographic complex with AmpC, eleven analogues were designed to complement additional AmpC sites, then synthesized and tested against clinical resistant pathogens. While the new inhibitors maintain similar in vitro activity as the starting lead, some of them exert a higher potency in in vivo tests, showing improved synergic potency with ceftazidime in resistant clinically isolated strains.
2017
mar-2017
975
986
Design, synthesis and biological evaluation of non-covalent AmpC Beta-Lactamases inhibitors / Genovese, Filippo; Lazzari, Sandra; Venturi, Ettore; Costantino, Luca; Blazquez, Jesus; Ibacache Quiroga, · Claudia; Costi, Maria Paola; Tondi, Donatella. - In: MEDICINAL CHEMISTRY RESEARCH. - ISSN 1054-2523. - (2017), pp. 975-986. [10.1007/s00044-017-1809-x]
Genovese, Filippo; Lazzari, Sandra; Venturi, Ettore; Costantino, Luca; Blazquez, Jesus; Ibacache Quiroga, · Claudia; Costi, Maria Paola; Tondi, Donatella
File in questo prodotto:
File Dimensione Formato  
Design, synthesis and biological evaluation of non-covalent, AmpC Beta-Lactamases inhibitors.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1130336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact