Context: LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously. Objective: The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery. Materials and methods For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells. Results and discussion Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy. Conclusions Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.

Conveying a newly designed hydrophilic anti-human thymidylate synthase peptide to cisplatin resistant cancer cells: are pH-sensitive liposomes more effective than conventional ones? / Sacchetti, Francesca; D'Arca, Domenico; Genovese, Filippo; Pacifico, Salvatore; Maretti, Eleonora; Hanuskova, Miriam; Iannuccelli, Valentina; Costi, Maria Paola; Leo, Eliana Grazia. - In: DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY. - ISSN 0363-9045. - 43:3(2017), pp. 465-473. [10.1080/03639045.2016.1262870]

Conveying a newly designed hydrophilic anti-human thymidylate synthase peptide to cisplatin resistant cancer cells: are pH-sensitive liposomes more effective than conventional ones?

SACCHETTI, FRANCESCA;D'ARCA, Domenico;GENOVESE, Filippo;MARETTI, ELEONORA;HANUSKOVA, Miriam;IANNUCCELLI, Valentina;COSTI, Maria Paola;LEO, Eliana Grazia
2017

Abstract

Context: LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously. Objective: The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery. Materials and methods For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells. Results and discussion Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy. Conclusions Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.
26-dic-2016
43
3
465
473
Conveying a newly designed hydrophilic anti-human thymidylate synthase peptide to cisplatin resistant cancer cells: are pH-sensitive liposomes more effective than conventional ones? / Sacchetti, Francesca; D'Arca, Domenico; Genovese, Filippo; Pacifico, Salvatore; Maretti, Eleonora; Hanuskova, Miriam; Iannuccelli, Valentina; Costi, Maria Paola; Leo, Eliana Grazia. - In: DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY. - ISSN 0363-9045. - 43:3(2017), pp. 465-473. [10.1080/03639045.2016.1262870]
Sacchetti, Francesca; D'Arca, Domenico; Genovese, Filippo; Pacifico, Salvatore; Maretti, Eleonora; Hanuskova, Miriam; Iannuccelli, Valentina; Costi, Maria Paola; Leo, Eliana Grazia
File in questo prodotto:
File Dimensione Formato  
Articolo DDIP Francesca.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1117950
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact