The recent rise in fuel prices, the need both to reduce ground transport-generated emissions (increasingly constrained by legislation) and to improve urban air quality have brought fuel-efficient, low-emissions powertrain technologies at the top of vehicle manufacturers' and policy makers' agenda. To these aims, engine design is now oriented towards the adoption of the so-called downsizing and down-speeding techniques, while preserving the performance target. Therefore, brake mean effective pressure is markedly increasing, leading to increased risks of knock onset and abnormal combustions in last-generation SI engines. To counterbalance the increased risks of pre-ignition, knock or mega-knock, currently made turbocharged SI engines usually operate with high fuel enrichments and delayed (sometimes negative) spark advances. The former is responsible for high fuel consumption levels, while the latter induce an even lower A/F ratio (below 11), to limit the turbine inlet temperature, with huge negative effects on BSFC. Possible solutions to increase knock resistance are investigated in the paper by means of 3D-CFD analyses: water, water/methanol emulsion and methanol are port-fuel injected to replace mixture enrichment while preserving, if not improving, indicated mean effective pressure and knock safety margins. The aim of the work is therefore the replacement of the gasoline-only rich mixture with a global stoichiometric one while avoiding power loss and improving fuel consumption. In order to maintain the same knock tendency, water, methanol or a mixture of the two is then added in the intake port to keep the same charge cooling of the original rich mixture. Different strategies in terms of methanol/water ratios of the port injected mixture are compared in order to find the best trade-off between fuel consumption, performance and knock tendency.

Effects on knock intensity and specific fuel consumption of port water/methanol injection in a turbocharged GDI engine: Comparative analysis / Breda, Sebastiano; Berni, Fabio; D'Adamo, Alessandro; Testa, Francesco; Severi, Elena; Cantore, Giuseppe. - In: ENERGY PROCEDIA. - ISSN 1876-6102. - 82:(2015), pp. 96-102. (Intervento presentato al convegno 70th Conference of the Italian Thermal Machines Engineering Association, ATI 2015 tenutosi a Roma nel 9-11 September 2015) [10.1016/j.egypro.2015.11.888].

Effects on knock intensity and specific fuel consumption of port water/methanol injection in a turbocharged GDI engine: Comparative analysis

BREDA, SEBASTIANO;BERNI, FABIO;D'ADAMO, Alessandro;TESTA, FRANCESCO;SEVERI, Elena;CANTORE, Giuseppe
2015

Abstract

The recent rise in fuel prices, the need both to reduce ground transport-generated emissions (increasingly constrained by legislation) and to improve urban air quality have brought fuel-efficient, low-emissions powertrain technologies at the top of vehicle manufacturers' and policy makers' agenda. To these aims, engine design is now oriented towards the adoption of the so-called downsizing and down-speeding techniques, while preserving the performance target. Therefore, brake mean effective pressure is markedly increasing, leading to increased risks of knock onset and abnormal combustions in last-generation SI engines. To counterbalance the increased risks of pre-ignition, knock or mega-knock, currently made turbocharged SI engines usually operate with high fuel enrichments and delayed (sometimes negative) spark advances. The former is responsible for high fuel consumption levels, while the latter induce an even lower A/F ratio (below 11), to limit the turbine inlet temperature, with huge negative effects on BSFC. Possible solutions to increase knock resistance are investigated in the paper by means of 3D-CFD analyses: water, water/methanol emulsion and methanol are port-fuel injected to replace mixture enrichment while preserving, if not improving, indicated mean effective pressure and knock safety margins. The aim of the work is therefore the replacement of the gasoline-only rich mixture with a global stoichiometric one while avoiding power loss and improving fuel consumption. In order to maintain the same knock tendency, water, methanol or a mixture of the two is then added in the intake port to keep the same charge cooling of the original rich mixture. Different strategies in terms of methanol/water ratios of the port injected mixture are compared in order to find the best trade-off between fuel consumption, performance and knock tendency.
2015
70th Conference of the Italian Thermal Machines Engineering Association, ATI 2015
Roma
9-11 September 2015
82
96
102
Breda, Sebastiano; Berni, Fabio; D'Adamo, Alessandro; Testa, Francesco; Severi, Elena; Cantore, Giuseppe
Effects on knock intensity and specific fuel consumption of port water/methanol injection in a turbocharged GDI engine: Comparative analysis / Breda, Sebastiano; Berni, Fabio; D'Adamo, Alessandro; Testa, Francesco; Severi, Elena; Cantore, Giuseppe. - In: ENERGY PROCEDIA. - ISSN 1876-6102. - 82:(2015), pp. 96-102. (Intervento presentato al convegno 70th Conference of the Italian Thermal Machines Engineering Association, ATI 2015 tenutosi a Roma nel 9-11 September 2015) [10.1016/j.egypro.2015.11.888].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S187661021502648X-main.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1115411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 20
social impact