This paper presents an optimization strategy to coordinate multiple Autonomous Guided Vehicles (AGVs) on ad-hoc pre-defined roadmaps used in logistic operations in industrial applications. Specifically, the objective is to maximize traffic throughput of AGVs navigating in an automated warehouse by minimizing the time AGVs spend negotiating complex traffic patterns to avoid collisions with other AGVs. In this work, the coordination problem is posed as a Quadratic Programming (QP) problem where the optimization is performed in a centralized manner. The optimality of the coordination strategy is established and the feasibility of the strategy is validated in simulation for different scenarios and for real industrial environments. The performance of the proposed strategy is then compared with a decentralized coordination strategy which relies on local negotiations for shared resources. The results show that the proposed coordination strategy successfully maximizes vehicle throughout and significantly minimizes the time vehicles spend negotiating traffic under different scenarios.
Data di pubblicazione: | 2015 |
Titolo: | A Quadratic Programming approach for coordinating multi-AGV systems |
Autore/i: | Digani, Valerio; Hsieh, M. Ani; Sabattini, Lorenzo; Secchi, Cristian |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | 10.1109/CoASE.2015.7294144 |
Nome del convegno: | 11th IEEE International Conference on Automation Science and Engineering, CASE 2015 |
Luogo del convegno: | Gothenburg, Sweden |
Data del convegno: | 24-28 August 2015 |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
15CASE.pdf | Versione editoriale | Administrator Richiedi una copia | ||
CASE2015.pdf | Post-print | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris