In order to accomplish cooperative tasks, decentralized systems are required to communicate among each other. Thus, maintaining the connectivity of the communication graph is a fundamental issue. Connectivity maintenance has been extensively studied in the last few years, but generally considering undirected communication graphs. In this paper, we introduce a decentralized control and estimation strategy to maintain the strong connectivity property of directed communication graphs. In particular, we introduce a hierarchical estimation procedure that implements power iteration in a decentralized manner, exploiting an algorithm for balancing strongly connected directed graphs. The output of the estimation system is then utilized for guaranteeing preservation of the strong connectivity property. The control strategy is validated by means of analytical proofs and simulation results.
Decentralized Estimation and Control for Preserving the Strong Connectivity of Directed Graphs / Sabattini, Lorenzo; Secchi, Cristian; Chopra, Nikhil. - In: IEEE TRANSACTIONS ON CYBERNETICS. - ISSN 2168-2267. - ELETTRONICO. - 45:10(2015), pp. 2273-2286. [10.1109/TCYB.2014.2369572]
Decentralized Estimation and Control for Preserving the Strong Connectivity of Directed Graphs
SABATTINI, Lorenzo;SECCHI, Cristian;
2015
Abstract
In order to accomplish cooperative tasks, decentralized systems are required to communicate among each other. Thus, maintaining the connectivity of the communication graph is a fundamental issue. Connectivity maintenance has been extensively studied in the last few years, but generally considering undirected communication graphs. In this paper, we introduce a decentralized control and estimation strategy to maintain the strong connectivity property of directed communication graphs. In particular, we introduce a hierarchical estimation procedure that implements power iteration in a decentralized manner, exploiting an algorithm for balancing strongly connected directed graphs. The output of the estimation system is then utilized for guaranteeing preservation of the strong connectivity property. The control strategy is validated by means of analytical proofs and simulation results.File | Dimensione | Formato | |
---|---|---|---|
06975103.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris