In this chapter, the closed-form compliance equations for Circularly Curved-Beam Flexures are derived. Following a general modeling procedure previously described in the literature, each element of the spatial compliance matrix is analytically computed as a function of both hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. Finally, a case study is presented concerning the potential application of these types of flexures in the optimal design of compliant robotic fingers.
Evaluating the Spatial Compliance of Circularly Curved-Beam Flexures / F., Parvari Rad; Berselli, Giovanni; R., Vertechy; V., Parenti Castelli. - STAMPA. - 15:(2014), pp. 377-386. [10.1007/978-94-007-7214-4_42]
Evaluating the Spatial Compliance of Circularly Curved-Beam Flexures
BERSELLI, Giovanni;
2014
Abstract
In this chapter, the closed-form compliance equations for Circularly Curved-Beam Flexures are derived. Following a general modeling procedure previously described in the literature, each element of the spatial compliance matrix is analytically computed as a function of both hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. Finally, a case study is presented concerning the potential application of these types of flexures in the optimal design of compliant robotic fingers.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris