Background: Kluyveromyces marxianus combines the ease of genetic manipulation and fermentation with the ability to efficiently secrete high molecular weight proteins, performing eukaryotic post-translational modifications. It is able to grow efficiently in a wide range of temperatures. The secretion performances were analyzed in the host K. marxianus L3 in the range between 5°C and 40°C by means of 3 different reporter proteins, since temperature appears a key parameter for production and secretion of recombinant proteins.Results: The recombinant strains were able to grow up to 40°C and, along the tested temperature interval (5-40°C), the specific growth rates (μ) were generally lower as compared to those of the untransformed strain. Biomass yields were slightly affected by temperature, with the highest values reached at 15°C and 30°C. The secretion of the endogenous β-fructofuranosidase, used as an internal control, was efficient in the range of the tested temperature, as evaluated by assaying the enzyme activity in the culture supernatants. The endogenous β-fructofuranosidase production was temperature dependent, with the highest yield at 30°C. The heterologous proteins HSA, GAA and Sod1p were all successfully produced and secreted between 5°C and 40°C, albeit each one presented a different optimal production temperature (15, 40, 5-30°C for HSA, GAA and Sod1p, respectively).Conclusions: K. marxianus L3 has been identified as a promising and flexible cell factory. In a sole host, the optimization of growth temperatures for the efficient secretion of each individual protein can be carried out over a wide range of temperatures.
Thermal adaptability of Kluyveromyces marxianus in recombinant protein production / Raimondi, Stefano; Elena, Zanni; Amaretti, Alberto; Claudio, Palleschi; Daniela, Uccelletti; Rossi, Maddalena. - In: MICROBIAL CELL FACTORIES. - ISSN 1475-2859. - STAMPA. - 12:1(2013), pp. 34-40. [10.1186/1475-2859-12-34]
Thermal adaptability of Kluyveromyces marxianus in recombinant protein production
RAIMONDI, Stefano;AMARETTI, Alberto;ROSSI, Maddalena
2013
Abstract
Background: Kluyveromyces marxianus combines the ease of genetic manipulation and fermentation with the ability to efficiently secrete high molecular weight proteins, performing eukaryotic post-translational modifications. It is able to grow efficiently in a wide range of temperatures. The secretion performances were analyzed in the host K. marxianus L3 in the range between 5°C and 40°C by means of 3 different reporter proteins, since temperature appears a key parameter for production and secretion of recombinant proteins.Results: The recombinant strains were able to grow up to 40°C and, along the tested temperature interval (5-40°C), the specific growth rates (μ) were generally lower as compared to those of the untransformed strain. Biomass yields were slightly affected by temperature, with the highest values reached at 15°C and 30°C. The secretion of the endogenous β-fructofuranosidase, used as an internal control, was efficient in the range of the tested temperature, as evaluated by assaying the enzyme activity in the culture supernatants. The endogenous β-fructofuranosidase production was temperature dependent, with the highest yield at 30°C. The heterologous proteins HSA, GAA and Sod1p were all successfully produced and secreted between 5°C and 40°C, albeit each one presented a different optimal production temperature (15, 40, 5-30°C for HSA, GAA and Sod1p, respectively).Conclusions: K. marxianus L3 has been identified as a promising and flexible cell factory. In a sole host, the optimization of growth temperatures for the efficient secretion of each individual protein can be carried out over a wide range of temperatures.File | Dimensione | Formato | |
---|---|---|---|
2013 marxianus.pdf
Open access
Descrizione: full text
Tipologia:
Versione pubblicata dall'editore
Dimensione
442.28 kB
Formato
Adobe PDF
|
442.28 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris