We study a generalized Caginalp phase-field system based on the theory of type III heat conduction proposed by Green and Naghdi and supplemented with Neumann boundary conditions. In contrast to the Dirichlet case, the system exhibits a lack of dissipation on the thermal displacement variable α. However, α minus its spatial average is dissipative and we are able to prove the existence of the global attractor with optimal regularity for the associated semigroup.
A generalization of the Caginalp phase-field system with Neumann boundary conditions / Conti, M.; Gatti, Stefania; Miranville, A.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 87:(2013), pp. 11-21. [10.1016/j.na.2013.03.016]
A generalization of the Caginalp phase-field system with Neumann boundary conditions
GATTI, Stefania;
2013
Abstract
We study a generalized Caginalp phase-field system based on the theory of type III heat conduction proposed by Green and Naghdi and supplemented with Neumann boundary conditions. In contrast to the Dirichlet case, the system exhibits a lack of dissipation on the thermal displacement variable α. However, α minus its spatial average is dissipative and we are able to prove the existence of the global attractor with optimal regularity for the associated semigroup.File | Dimensione | Formato | |
---|---|---|---|
NA2013.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
411.32 kB
Formato
Adobe PDF
|
411.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris