The present paper proposes a numerical methodology aiming at analyzing and optimizing an internal combustion engine water cooling jacket, with particular emphasis on the assessment of the fatigue strength of the engine head. Full three-dimensional CFD and FEM analyses of the conjugate heat transfer and of the thermo-mechanical loading cycles are presented for a single bank of a currently made V6 turbocharged Diesel engine under actual operating conditions. A detailed model of the engine, consisting of both the coolant galleries and the surrounding metal components is employed in both fluid-dynamic and structural analyses to accurately mimic the influence of the cooling system layout on the thermo-mechanical behavior of the engine. In order to assess a proper CFD setup useful for the optimization of the thermal behavior of the engine, the experimentally measured temperature distribution within the engine head is compared to the CFD forecasts. Particular attention is paid to the modeling of the phase transition and of the vapor nuclei formation within the coolant galleries. Thermo-mechanical analyses are then carried out aiming at addressing the design optimization of the engine in terms of fatigue strength. Because of the wide range of thermal and mechanical loadings acting on the engine head, both high-cycle and low-cycle fatigue are considered. An energy-based multi-axial criterion specifically suited for thermal fatigue is employed in the low-cycle fatigue region (i.e. the combustion dome) while well-established multi-axial stress/strain-based criteria are adopted to investigate the high-cycle fatigue regions of the engine head (i.e. the coolant galleries). The proposed methodology shows very promising results in terms of point-wise detection of possible engine failures and proves to be an effective tool for the accurate thermo-mechanical characterization of internal combustion engines under actual life-cycle operating conditions.

Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine / Fontanesi, Stefano; Giacopini, Matteo. - In: APPLIED THERMAL ENGINEERING. - ISSN 1359-4311. - STAMPA. - 52:2(2013), pp. 293-303. [10.1016/j.applthermaleng.2012.12.005]

Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine

FONTANESI, Stefano;GIACOPINI, Matteo
2013

Abstract

The present paper proposes a numerical methodology aiming at analyzing and optimizing an internal combustion engine water cooling jacket, with particular emphasis on the assessment of the fatigue strength of the engine head. Full three-dimensional CFD and FEM analyses of the conjugate heat transfer and of the thermo-mechanical loading cycles are presented for a single bank of a currently made V6 turbocharged Diesel engine under actual operating conditions. A detailed model of the engine, consisting of both the coolant galleries and the surrounding metal components is employed in both fluid-dynamic and structural analyses to accurately mimic the influence of the cooling system layout on the thermo-mechanical behavior of the engine. In order to assess a proper CFD setup useful for the optimization of the thermal behavior of the engine, the experimentally measured temperature distribution within the engine head is compared to the CFD forecasts. Particular attention is paid to the modeling of the phase transition and of the vapor nuclei formation within the coolant galleries. Thermo-mechanical analyses are then carried out aiming at addressing the design optimization of the engine in terms of fatigue strength. Because of the wide range of thermal and mechanical loadings acting on the engine head, both high-cycle and low-cycle fatigue are considered. An energy-based multi-axial criterion specifically suited for thermal fatigue is employed in the low-cycle fatigue region (i.e. the combustion dome) while well-established multi-axial stress/strain-based criteria are adopted to investigate the high-cycle fatigue regions of the engine head (i.e. the coolant galleries). The proposed methodology shows very promising results in terms of point-wise detection of possible engine failures and proves to be an effective tool for the accurate thermo-mechanical characterization of internal combustion engines under actual life-cycle operating conditions.
2013
52
2
293
303
Multiphase CFD–CHT optimization of the cooling jacket and FEM analysis of the engine head of a V6 diesel engine / Fontanesi, Stefano; Giacopini, Matteo. - In: APPLIED THERMAL ENGINEERING. - ISSN 1359-4311. - STAMPA. - 52:2(2013), pp. 293-303. [10.1016/j.applthermaleng.2012.12.005]
Fontanesi, Stefano; Giacopini, Matteo
File in questo prodotto:
File Dimensione Formato  
ATE4536-FINAL-PRINTED.pdf

Accesso riservato

Descrizione: Articolo completo
Tipologia: Versione pubblicata dall'editore
Dimensione 2.39 MB
Formato Adobe PDF
2.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/903490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 49
social impact