This paper proposes a new automotive box-beam crash absorber design with sinusoidal patterns embedded on the beam surfaces. Six different types of surface patterns were initially proposed and a total of 43 samples were simulated using the commercial pre-processor HyperCrash™ and the commercial explicit FEM solver RADIOSS™. The aim of the study is to improve energy absorption properties of the beams by controlling the wavelength of progressive buckle formations and obtaining denser collapse formations. It was found that the relief patterns could be used effectively to change the buckling modes and reduce the buckle wavelength. A maximum of 42 percent increase in the amount of total energy absorbed and an increase in the energy efficiency factor from 1.08 to 1.54 was observed moving from the reference model to the best design so far. This research may possibly pave new avenues in crash absorber design.
Crash behavior of thin-Walled box beams with complex sinusoidal relief patterns / Qureshi, OMER MASOOD; Bertocchi, Enrico. - In: THIN-WALLED STRUCTURES. - ISSN 0263-8231. - STAMPA. - 53:(2012), pp. 217-223. [10.1016/j.tws.2011.12.006]
Crash behavior of thin-Walled box beams with complex sinusoidal relief patterns
QURESHI, OMER MASOOD;BERTOCCHI, Enrico
2012
Abstract
This paper proposes a new automotive box-beam crash absorber design with sinusoidal patterns embedded on the beam surfaces. Six different types of surface patterns were initially proposed and a total of 43 samples were simulated using the commercial pre-processor HyperCrash™ and the commercial explicit FEM solver RADIOSS™. The aim of the study is to improve energy absorption properties of the beams by controlling the wavelength of progressive buckle formations and obtaining denser collapse formations. It was found that the relief patterns could be used effectively to change the buckling modes and reduce the buckle wavelength. A maximum of 42 percent increase in the amount of total energy absorbed and an increase in the energy efficiency factor from 1.08 to 1.54 was observed moving from the reference model to the best design so far. This research may possibly pave new avenues in crash absorber design.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022509608001488-main.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris