Benign Paroxyrnal Positional Vertigo and variants, collectively called "vestibular lithiasis", designate a common disorder caused by a malfunction of the inner ear. These pathologies are connected with the presence of dense particles within the semicircular canals which interfere with the sensing capabilities of angular velocity in the patient, causing nystagmus and vertigo. Some of these conditions can be treated by repositioning maneuvers physically done by the doctor that moves the head of the patient along different poses in space. Despite the fact that the treatment shows a success rate up to 80-90%, the failure rate remains highly significant and it is proven that precision repeatability and unlimited 360° manoeuvrability can improve diagnostic and treatment potential for overcoming this kind of vertigo. In this paper the kinematic design of a serial robot that will execute repositioning maneuvers automatically is performed through a simplified task based kinematic design technique. The aim of the method is to find the minimum number of degrees of freedom to carry out a set of given tasks as well as the manipulator's topology and the Denavit-Hartenberg parameters. The proposed procedure firstly minimizes the number of degrees of freedom only and then a cost function connected to the total link length.

Task based kinematic design of a serial robot for the treatment of vestibular lithiasis / Berselli, Giovanni; R., Falconi; G., Vassura; G. C., Modugno. - ELETTRONICO. - (2007), pp. 138-144. (Intervento presentato al convegno 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR'07 tenutosi a Noordwijk, nld nel 12-15 Giugno 2007) [10.1109/ICORR.2007.4428419].

Task based kinematic design of a serial robot for the treatment of vestibular lithiasis

BERSELLI, Giovanni;
2007

Abstract

Benign Paroxyrnal Positional Vertigo and variants, collectively called "vestibular lithiasis", designate a common disorder caused by a malfunction of the inner ear. These pathologies are connected with the presence of dense particles within the semicircular canals which interfere with the sensing capabilities of angular velocity in the patient, causing nystagmus and vertigo. Some of these conditions can be treated by repositioning maneuvers physically done by the doctor that moves the head of the patient along different poses in space. Despite the fact that the treatment shows a success rate up to 80-90%, the failure rate remains highly significant and it is proven that precision repeatability and unlimited 360° manoeuvrability can improve diagnostic and treatment potential for overcoming this kind of vertigo. In this paper the kinematic design of a serial robot that will execute repositioning maneuvers automatically is performed through a simplified task based kinematic design technique. The aim of the method is to find the minimum number of degrees of freedom to carry out a set of given tasks as well as the manipulator's topology and the Denavit-Hartenberg parameters. The proposed procedure firstly minimizes the number of degrees of freedom only and then a cost function connected to the total link length.
2007
2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR'07
Noordwijk, nld
12-15 Giugno 2007
138
144
Berselli, Giovanni; R., Falconi; G., Vassura; G. C., Modugno
Task based kinematic design of a serial robot for the treatment of vestibular lithiasis / Berselli, Giovanni; R., Falconi; G., Vassura; G. C., Modugno. - ELETTRONICO. - (2007), pp. 138-144. (Intervento presentato al convegno 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR'07 tenutosi a Noordwijk, nld nel 12-15 Giugno 2007) [10.1109/ICORR.2007.4428419].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/853317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact