L’articolo presenta alcuni risultati relativi all’analisi termo-meccanica di un motore Diesel automobilistico 6 cilindri a V di cilindrata complessiva 2900cc. Lo studio è condotto utilizzando simulazioni disaccoppiate CFD e FEM allo scopo di valutare la resistenza a fatica dei componenti. La distribuzione di fluido nel circuito di raffreddamento è stata in precedenza oggetto di approfondite analisi e ottimizzazioni al fine di migliorare le caratteristiche dei passaggi del refrigerante. Una metodologia semplificata al fine di stimare la caratteristica termo-meccanica di testate motore soggette alle reali condizioni operative è stata proposta dagli autori in precedenti pubblicazioni. Come conseguenza dell’elevata complessità dei vari fenomeni coinvolti, in questo articolo si introducono alcune importanti migliorie, che consentono un’analisi più accurata della resistenza a fatica del motore, soggetto a carichi affaticanti ad alta frequenza e a bassa frequenza. La metodologia oggetto del presente articolo si basa ancora una volta sull’analisi disaccoppiata CFD e FEM, con rilevanti miglioramenti apportati su entrambi i fronti di simulazione. Dal lato CFD, si utilizza una nuova tipologia di griglia poliedrica, che riesce a combinare l’elevata risoluzione spaziale della mesh con una richiesta computazionale accettabile e un’elevata stabilità numerica della simulazione; particolare attenzione viene dedicata alla rappresentazione del flusso in parete. Mediante l’analisi CFD – CHT (conjugate heat transfer) è valutata la distribuzione puntuale del flusso di calore al refrigerante, includendo nel dominio di calcolo anche il metallo del basamento, della testa completa dei componenti forzati, nonché della guarnizione. Al fine di valutare e incrementare l’accuratezza della previsione numerica, sono stati effettuati e vengono mostrati alcuni confronti con misure sperimentali di temperatura in alcuni punti della testa per condizioni stazionarie di funzionamento del motore. Particolare cura è rivolta alla rappresentazione dello strato limite, fluidodinamico e termico. Allo stesso tempo, grande attenzione è data all’applicazione delle condizioni al contorno termiche, in particolare alla distribuzione dei flussi termici tra i vari componenti affacciati alla camera di combustione. Al fine di massimizzare l’accuratezza delle previsioni CFD, sono valutati criticamente gli effetti dell’ebollizione del refrigerante sulla previsione dello scambio termico tra refrigerante e metallo. I risultati delle simulazioni CFD, ed in particolare la distribuzione puntuale del flusso di calore sulla superficie di contatto fluido/solido, sono successivamente trasferiti come condizione al contorno all’analisi termo-strutturale per la valutazione della resistenza a fatica del componente. A tal fine, si utilizza una routine appositamente realizzata, in grado di mappare la distribuzione puntuale dei flussi termici calcolata tramite le simulazioni CFD su una griglia di calcolo ottimizzata per le analisi FEM. Dal lato termo-meccanico, la principale novità introdotta è l’implementazione di un criterio di tipo energetico per la stima della resistenza a fatica a basso numero di cicli; tale criterio, utilizzato in congiunzione con i più classici criteri tensionali o deformativi, consente di disporre di uno strumento di progettazione capace di predire la resistenza delle singole parti del motore soggette ai differenti carichi agenti. Sono infatti analizzati carichi affaticanti sia ad alto sia a basso numero di cicli, e la metodologia proposta è applicata con successo al fine di predire i possibili punti di innesco di fratture sulla testa e di migliorare le caratteristiche del circuito di raffreddamento.
Sviluppo di una metodologia CFD e FEM per l’analisi a fatica di componenti motoristici / Cantore, Giuseppe; Fontanesi, Stefano; Cicalese, Giuseppe; Strozzi, Antonio; Giacopini, Matteo. - ELETTRONICO. - (2010), pp. 121-123. (Intervento presentato al convegno 1° Congresso Nazionale del Coordinamento della Meccanica Italiana tenutosi a Palermo, Italia nel 20-22 Giugno 2010).
Sviluppo di una metodologia CFD e FEM per l’analisi a fatica di componenti motoristici
CANTORE, Giuseppe;FONTANESI, Stefano;CICALESE, Giuseppe;STROZZI, Antonio;GIACOPINI, Matteo
2010
Abstract
L’articolo presenta alcuni risultati relativi all’analisi termo-meccanica di un motore Diesel automobilistico 6 cilindri a V di cilindrata complessiva 2900cc. Lo studio è condotto utilizzando simulazioni disaccoppiate CFD e FEM allo scopo di valutare la resistenza a fatica dei componenti. La distribuzione di fluido nel circuito di raffreddamento è stata in precedenza oggetto di approfondite analisi e ottimizzazioni al fine di migliorare le caratteristiche dei passaggi del refrigerante. Una metodologia semplificata al fine di stimare la caratteristica termo-meccanica di testate motore soggette alle reali condizioni operative è stata proposta dagli autori in precedenti pubblicazioni. Come conseguenza dell’elevata complessità dei vari fenomeni coinvolti, in questo articolo si introducono alcune importanti migliorie, che consentono un’analisi più accurata della resistenza a fatica del motore, soggetto a carichi affaticanti ad alta frequenza e a bassa frequenza. La metodologia oggetto del presente articolo si basa ancora una volta sull’analisi disaccoppiata CFD e FEM, con rilevanti miglioramenti apportati su entrambi i fronti di simulazione. Dal lato CFD, si utilizza una nuova tipologia di griglia poliedrica, che riesce a combinare l’elevata risoluzione spaziale della mesh con una richiesta computazionale accettabile e un’elevata stabilità numerica della simulazione; particolare attenzione viene dedicata alla rappresentazione del flusso in parete. Mediante l’analisi CFD – CHT (conjugate heat transfer) è valutata la distribuzione puntuale del flusso di calore al refrigerante, includendo nel dominio di calcolo anche il metallo del basamento, della testa completa dei componenti forzati, nonché della guarnizione. Al fine di valutare e incrementare l’accuratezza della previsione numerica, sono stati effettuati e vengono mostrati alcuni confronti con misure sperimentali di temperatura in alcuni punti della testa per condizioni stazionarie di funzionamento del motore. Particolare cura è rivolta alla rappresentazione dello strato limite, fluidodinamico e termico. Allo stesso tempo, grande attenzione è data all’applicazione delle condizioni al contorno termiche, in particolare alla distribuzione dei flussi termici tra i vari componenti affacciati alla camera di combustione. Al fine di massimizzare l’accuratezza delle previsioni CFD, sono valutati criticamente gli effetti dell’ebollizione del refrigerante sulla previsione dello scambio termico tra refrigerante e metallo. I risultati delle simulazioni CFD, ed in particolare la distribuzione puntuale del flusso di calore sulla superficie di contatto fluido/solido, sono successivamente trasferiti come condizione al contorno all’analisi termo-strutturale per la valutazione della resistenza a fatica del componente. A tal fine, si utilizza una routine appositamente realizzata, in grado di mappare la distribuzione puntuale dei flussi termici calcolata tramite le simulazioni CFD su una griglia di calcolo ottimizzata per le analisi FEM. Dal lato termo-meccanico, la principale novità introdotta è l’implementazione di un criterio di tipo energetico per la stima della resistenza a fatica a basso numero di cicli; tale criterio, utilizzato in congiunzione con i più classici criteri tensionali o deformativi, consente di disporre di uno strumento di progettazione capace di predire la resistenza delle singole parti del motore soggette ai differenti carichi agenti. Sono infatti analizzati carichi affaticanti sia ad alto sia a basso numero di cicli, e la metodologia proposta è applicata con successo al fine di predire i possibili punti di innesco di fratture sulla testa e di migliorare le caratteristiche del circuito di raffreddamento.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris